On Homomorphic Encryption and Secure Computation

Shai Halevi

IBM|NYU|Columbia Theory Day, May 7, 2010

Computing on Encrypted Data

Wouldn't it be nice to be able to...

- Encrypt my data in the cloud
- While still allowing the cloud to search/sort/edit/... this data on my behalf
- Keeping the data in the cloud in encrypted form
$>$ Without needing to ship it back and forth to be decrypted

Computing on Encrypted Data

Wouldn't it be nice to be able to...

- Encrypt my queries to the cloud
- While still allowing the cloud to process them
- Cloud returns encrypted answers
$>$ that I can decrypt

Computing on Encrypted Data

Computing on Encrypted Data

\$kjh9*mslt@na0
\&maXxjq02bflx
$\mathrm{m}^{\wedge} 00 \mathrm{a} 2 \mathrm{~nm} 5, \mathrm{~A} 4$.
pE.abxp3m58bsa
(3saM\%w,snanba
nq~mD=3akm2,A
Z,ltnhde83l3mz\{n
dewiunb4]gnbTa*
kjew^bwJ^mdns0 2

Part I:
Constructing
Homomorphic Encryption

Privacy Homomorphisms [RAD78]

Plaintext space P

Ciphertext space e

Some examples:

- "Raw RSA": $c \leftarrow x^{e} \bmod N\left(x \leftarrow c^{d} \bmod N\right)$
$>x_{1}^{e} \times x_{2}{ }^{e}=\left(x_{1} \times x_{2}\right)^{e} \bmod N$
- GM84: Enc (0) $\epsilon_{\mathrm{R}} \mathrm{QR}, \operatorname{Enc}(1) \in_{\mathrm{R}}$ QNR (in $Z_{N}{ }^{*}$)
$>\operatorname{Enc}\left(x_{1}\right) \times \operatorname{Enc}\left(x_{2}\right)=\operatorname{Enc}\left(x_{1} \oplus x_{2}\right) \bmod N$

More Privacy Homomorphisms

- Mult-mod-p [ElGamal'84]
- Add-mod-N [Pallier'98]
- NC1 circuits [SYY'00]
- Quadratic-polys mod p [BGN'06]
- Poly-size branching programs [IP’07]
- See Part II for a "different type of solution" for any poly-size circuit [Yao'82,...]

(x,+)-Homomorphic Encryption

It will be really nice to have...

- Plaintext space Z_{2} (w/ ops,$+ x$)
- Ciphertext space some ring $R(w /$ ops,$+ x)$
- Homomorphic for both + and x
$>\operatorname{Enc}\left(x_{1}\right)+\operatorname{Enc}\left(x_{2}\right)$ in $\mathbb{R}=\operatorname{Enc}\left(x_{1}+x_{2} \bmod 2\right)$
$>\operatorname{Enc}\left(x_{1}\right) \times \operatorname{Enc}\left(x_{2}\right)$ in $\mathbb{R}=\operatorname{Enc}\left(x_{1} \times x_{2} \bmod 2\right)$
- Then we can compute any function on the encryptions
$>$ Since every binary function is a polynomial
- We won't get exactly this, but it's a good motivation

Some Notations

- An encryption scheme: (KeyGen, Enc, Dec)
$>$ Plaintext-space $=\{0,1\}$
$>(p k, s k) \leftarrow \operatorname{KeyGen}(\$), c \leftarrow \operatorname{Enc}_{\mathrm{pk}}(b), b \leftarrow \operatorname{Dec}_{s k}(c)$
- Semantic security [GM'84]:
$\left(p k, \operatorname{Enc}_{p k}(0)\right) \approx\left(p k, \operatorname{Enc}_{p k}(1)\right)$
\approx means indistinguishable by efficient algorithms

Homomorphic Encryption

- $H=\{$ KeyGen, Enc, Dec, Eval $\}$ $c^{*} \leqslant \operatorname{Eval}_{p k}(f, c)$
\circ Homomorphic: $\operatorname{Dec}_{\mathrm{sk}}\left(\operatorname{Eval}_{\mathrm{pk}}\left(f, \mathrm{Enc}_{\mathrm{pk}}(x)\right)\right)=f(x)$
$>$ ("Fully" Homomorphic: for every function f)
$>\operatorname{Enc}_{\mathrm{pk}}(f(x)), \operatorname{Eval}_{\mathrm{pk}}\left(f, \operatorname{Enc}_{\mathrm{pk}}(x)\right)$ may differ
- As long as both distributions decrypt to $f(x)$
- Function-private: $\operatorname{Eval}_{\mathrm{pk}}\left(f_{1} \operatorname{Enc}_{\mathrm{pk}}(x)\right)$ hides f
- Compact: | $\operatorname{Eval}_{\mathrm{pk}}\left(f, \mathrm{Enc}_{\mathrm{pk}}(x)\right)$ | independent of $|f|$

($x,+$)-Homomorphic Encryption, the Gentry Way [G'09]

Evaluate any function in four "easy" steps

- Step 1: Encryption from linear ECCs
> Additive homomorphism
- Step 2: ECC lives inside a ring
> Also multiplicative homomorphism
> But only for a few operations (i.e., low-degree poly's)
- Step 3: Bootstrapping
$>$ Few ops (but not too few) \rightarrow any number of ops
- Step 4: Everything else

Step One:
 Encryption from Linear ECCs

- For "random looking" codes, hard to distinguish close/far from code
- Many cryptosystems built on this hardness
>E.g., [McEliece'78, AD'97, GGH'97, R'03,...]

Encryption from linear ECCs

- KeyGen: choose a "random" code \mathcal{C}

Secret key: "good representation" of \mathcal{C}

- Allows correction of "large" errors
$>$ Public key: "bad representation" of e
- Enc(0): a word close to \mathfrak{C}
- Enc(1): a random word
>Far from e (with high probability)

An Example: Integers mod p (similar to [Regev03])

- Code determined by an integer p
> Codewords: multiples of p
- Good representation: p itself
- Bad representation:
$>N=p q$, and also many many $x_{i}=p q_{i}+r_{i}$
- Enc(0): subset-sum $\left(x_{i}^{\prime} \mathrm{s}\right)+r \bmod N$
- Enc(1): random integer mod N

A Different Input Encoding

- Plaintext bit is LSB of $\operatorname{dist}(c, \mathcal{C})$
- Enc(0/1): close to e, distance is even/odd
$>$ In our example of integers $\bmod p$:
- Enc $(b)=2\left(\right.$ subset-sum $\left.\left(x_{i}{ }^{\prime} s\right)+r\right)+b \bmod N$
$-\operatorname{Dec}(c)=(c \bmod p) \bmod 2 \quad p$ is odd
- Thm: If "e co-prime with 2", then Enc(0), Enc(1) indistinguishable
$>w$ is near-e/random $\rightarrow 2 w+\mathrm{b}$ is Enc(b)/random

Additive Homomorphism

o $c_{1}+c_{2}=\left(\right.$ codeword $_{1}+$ codeword $\left._{2}\right)$

$$
+2\left(r_{1}+r_{2}\right)+b_{1}+b_{2}
$$

$>$ codeword $_{1}+$ codeword $_{2} \in \mathbb{C}$
$>$ If $2\left(r_{1}+r_{2}\right)+b_{1}+b_{2}<$ min-dist/2, then it is the distance between $c_{1}+c_{2}$ and ϱ
$>\operatorname{dist}\left(c_{1}+c_{2}, \mathcal{C}\right)=b_{1}+b_{2} \bmod 2$

- Additively-homomorphic while close to \mathbb{C}

Step 2: ECC Lives in a Ring R

- What happens when multiplying in \mathbb{R} :
$>c_{1} c_{2}=$ codeword $\left._{1}+2 r_{1}+b_{1}\right) \times\left(\right.$ codeword $\left._{2}+2 r_{2}+b_{2}\right)$
$=$ codeword $_{1} X+Y$ codeword $_{2}$
$+\left(2 r_{1}+b_{1}\right)\left(2 r_{2}+b_{2}\right)$
○ If:
$>$ codeword $_{1} X+Y$ codeword $_{2} \in e$
$>\left(2 r_{1}+b_{1}\right)\left(2 r_{2}+b_{2}\right)<$ min-dist $/ 2 \quad$ Product in Rof small

e is both a left-ideal and a right-ideal elements is small

0 Then

$>\operatorname{dist}\left(c_{1} c_{2}, \mathcal{C}\right)=\left(2 r_{1}+b_{1}\right)\left(2 r_{2}+b_{2}\right)=b_{1} b_{2} \bmod 2$

Integers Rings [vDGHV'10]

- Recall mod $-p$ scheme: $c_{i}=q_{i} p+2 r_{i}+b_{i}(\bmod N=q p)$
> Parameters: $\left|r_{i}\right|=n,|p|=n^{2},|q|=\left|q_{i}\right|=n^{5}$
- $c_{1}+c_{2} \bmod N=\left(q_{1}+q_{2}-\kappa q\right) p+2\left(r_{1}+r_{2}\right)+\left(b_{1}+b_{2}\right)$
\rightarrow sum mod $p=2\left(r_{1}+r_{2}\right)+\left(b_{1}+b_{2}\right)$
- $c_{1} \times c_{2} \bmod N=\left(c_{1} q_{2}+q_{1} c_{2}-q_{1} q_{2}-\kappa q\right) p$

$$
+2\left(2 r_{1} r_{2}+r_{1} m_{2}+m_{1} r_{2}\right)+b_{1} b_{2}
$$

\rightarrow product $\bmod p=2\left(2 r_{1} r_{2}+\ldots\right)+b_{1} b_{2}$

- Can evaluate polynomials of degree $\sim n$ before the distance from \mathcal{C} exceeds $p / 2$

Integers Rings [vDGHV'10]

Thm: "Approximate GCD" is hard
\rightarrow Enc(0), Enc(1) are indistinguishable
\circ Apprixmate-GCD: Given $N=q p$ and many $x_{i}=p q_{i}+r_{i}$ hard to recover p

Polynomial Rings [G;09]

a $\boldsymbol{R}=$ polynomial ring modulo some $f(x)$
E.g., $f(x)=x^{n}+1$
$-\mathcal{C}$ is an ideal in R
$>$ E.g., random $g(x), \boldsymbol{e}_{g}=\{g \times h \bmod f: h \in \mathbb{R}\}$

- e is also a lattice
-Good representation: g itself
$>$ Bad representation: Hermite-Normal-Form
- If g has t-bit coefficients, can evaluate polynomials of degree $\mathrm{O}(t / \log n)$

Polynomial Rings [G’09]

Thm: Bounded-Distance Decoding in ideal lattices is hard $\rightarrow \operatorname{Enc}(0)$, $\operatorname{Enc}(1)$ are indistinguishable

- Bounded-Distance-Decoding: Given x close to the lattice, find dist(x, lattice)

Matrix Rings* [GHV'10]

- $R=$ ring of $m \times m$ matrices over Z_{q}
$>q=\operatorname{poly}(n), m>n \log q$ (n security-parameter)
- \mathcal{C} has low-rank matrices mod $q($ rank $=n)$
$>A$ is a random $n \times m$ matrix, $\mathcal{C}_{A}=\{A X: X \in \mathbb{R}\}$
$>$ Bad representation: A itself
$>$ Good representation: full rank $T_{m \times m}$ (over Z), small entries, $T A=0 \bmod q$
- Problem: \mathcal{C}_{A} is left-ideal, but not right-ideal
- Can still evaluate quadratic formulas, no more

Matrix Rings* [GHV'10]

Thm: Learning with Errors hard
\rightarrow Enc(0), Enc(1) are indistinguishable

- Learning with Errors: Given $A, A \boldsymbol{x}+\boldsymbol{e}$
(random A, \boldsymbol{x}, small error \boldsymbol{e}), find \boldsymbol{x}

Step 3: Bootstrapping [G’09]

- So far, can evaluate low-degree polynomials


```
P(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{t}{})
```


Step 3: Bootstrapping [G’09]

- So far, can evaluate low-degree polynomials
$x_{1} x_{1}$
x_{2}
\cdots
\cdots
x_{t}


```
P(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{t}{\prime})
```

- Can eval $y=P\left(x_{1}, x_{2} \ldots, x_{n}\right)$ when x_{i}^{\prime} 's are "fresh"
- But y is an "evaluated ciphertext"
>Can still be decrypted
>But eval $Q(y)$ will increase noise too much

Step 3: Bootstrapping [G’09]

- So far, can evaluate low-degree polynomials

$x_{1} x_{1}$
x_{2}
\cdots
x_{t}

$\mathrm{P}\left(x_{1}, x_{2}, \ldots, x_{t}\right)$

- Bootstrapping to handle higher degrees:
- For ciphertext c, consider $\mathbf{D}_{c}(s k)=\operatorname{Dec}_{s k}(c)$
$>$ Hope: $\mathrm{D}_{c}(*)$ is a low-degree polynomial in $s k$
$>$ Then so are $\mathrm{A}_{c_{1} c_{2}(s k)}=\operatorname{Dec}_{s k}\left(c_{1}\right)+\operatorname{Dec}_{s k}\left(c_{2}\right)$ and
$\mathrm{M}_{c_{1}, c_{2}}(s k)=\operatorname{Dec}_{s k}\left(c_{1}\right) \times \operatorname{Dec}_{s k}\left(c_{2}\right)$

Step 3: Bootstrapping [G’09]

- Include in the public key also $\operatorname{Enc}_{p k}(s k)$

Requires "circular security"

Step 3: Bootstrapping [G’09]

- Include in the public key also $\mathrm{Enc}_{p k}(s k)$

Requires "circular security"

- Homomorphic computation applied only to the "fresh" encryption of $s k$

Step 4: Everything Else

- Cryptosystems from [G'09, vDGHV'10] cannot handle their own decryption as-is
- Apply some tricks to "squash" the decryption procedure

Part II:
Homomorphic Encryption vs. Secure Computation

Secure Function Evaluation (SFE)

Client Alice has data x

Server Bob has function f
Alice wants to learn $f(x)$

1. Without telling Bob what x is
2. Bob may not want Alice to know f
3. Client Alice may also want server Bob to do most of the work computing $f(x)$

Two-Message SFE [Yao'82,...]

- Many different instantiations are available
> Based on hardness of factoring/DL/lattices/...
- Alice's x and Bob's f are kept private
- But Alice does as much work as Bob
$>$ Bob's reply of size poly $(n) \times(|f|+|x|)$

Recall:
 Homomorphic Encryption

- $H=\{$ KeyGen, Enc, Dec, Eval\}
- Semantic security: $\left(p k, \operatorname{Enc}_{\mathrm{pk}}(0)\right) \approx\left(p k, \mathrm{Enc}_{\mathrm{pk}}(1)\right)$
\circ Homomorphic: $\operatorname{Dec}_{\mathrm{sk}}\left(\operatorname{Eval}_{\mathrm{pk}}\left(f, \operatorname{Enc}_{\mathrm{pk}}(x)\right)\right)=f(x)$
> ("Fully" Homomorphic: for every function f)
$>\mathrm{Enc}_{\mathrm{pk}}(f(x)), \mathrm{Eval}_{\mathrm{pk}}\left(f, \mathrm{Enc}_{\mathrm{pk}}(x)\right)$ may differ
- As long as both distributions decrypt to $f(x)$
- Function-private: $\operatorname{Eval}_{\mathrm{pk}}\left(f, \operatorname{Enc}_{\mathrm{pk}}(x)\right)$ hides f
- Compact: | $\operatorname{Eval}_{\mathrm{pk}}\left(f, \mathrm{Enc}_{\mathrm{pk}}(x)\right)$ | independent of $|f|$

Aside: a Trivial Solution

$-\operatorname{Eval}(f, c)=\left\langle f, c>, \operatorname{Dec}^{*}(<f, c>)=f(\operatorname{Dec}(c))\right.$

- Neither function-private, nor compact
- Not very useful in applications

HE \rightarrow Two-Message SFE

- Alice encrypts data x
$>$ sends to Bob $c \leftarrow \operatorname{Enc}(x)$
- Bob computes on encrypted data
$>$ sets $c^{*} \leftarrow \operatorname{Eval}(f, c)$
$>c^{*}$ is supposed to be an encryption of $f(x)$
$>$ Hopefully it hides f (function-private scheme)
\circ Alice decrypts, recovers $y \leftarrow \operatorname{Dec}\left(c^{*}\right)$

Two-Message SFE \rightarrow HE

- Roughly:
$>$ Alice's message $c \leftarrow \operatorname{SFE1}(x)$ is $\operatorname{Enc}(x)$
$>$ Bob's reply $r \leftarrow \operatorname{SFE} 2(f, c)$ is $\operatorname{Eval}(f, c)$
- Not quite public-key encryption yet
$>$ Where are $(p k, s k)$?
>Can be fixed with an auxiliary PKE scheme

Two-Message SFE \rightarrow HE

Alice $(p k, x)$

$\operatorname{Bob}(f)$

Dora(sk)

$r \leftarrow \operatorname{SFE} 2(f, c)$
$y<\operatorname{SFE} 3(s, r)$

- Add an auxiliary encryption scheme
$>$ with $(p k, s k)$

Two-Message SFE \rightarrow HE

$\operatorname{Bob}(f)$

Dora(sk)

- Recall: $|r|$ could be as large as poly $(n)(|f|+|x|)$
> Not compact

A More Complex Setting: i-Hop HE [GHV10b]

- c_{1} is not a fresh ciphertext
> May look completely different
- Can Charlie process it at all?
> What about security?

Multi-Hop Homomorphic Encryption

- $H=\{$ KeyGen, Enc, Eval, Dec $\}$ as before
- i-Hop Homomorphic (i is a parameter)
$x \rightarrow \mathrm{Enc}_{\mathrm{pk}}(x) \quad \xrightarrow{c_{0}} \underbrace{\mathrm{Eval}_{\mathrm{pk}}\left(f_{1}, c_{0}\right)}_{\text {Any number } j \leq i \text { hops }} \xrightarrow{c_{1}} \mathrm{Eval}_{\mathrm{pk}}\left(f_{2}, c_{1}\right) \xrightarrow{c_{2}} \ldots \quad \stackrel{c_{\mathrm{j}}}{\operatorname{Dec}_{\mathrm{sk}}(x)} \rightarrow y$
$>y=f_{j}\left(f_{j-1}\left(\ldots f_{1}(x) \ldots\right)\right)$ for any x, f_{1}, \ldots, f_{j}
- Similarly for i-Hop function-privacy, compactness
- Multi-Hop: i-Hop for any i

1-Hop \rightarrow multi-Hop HE

- (KeyGen,Enc,Eval,Dec) is 1-Hop HE

Can evaluate any single function on ctxt

- We have $c_{1}=\operatorname{Eval}_{p k}\left(f_{1}, c_{0}\right)$, and some other f_{2}

Bootstrapping:

- Include with $p k$ also $c^{*}=\operatorname{Enc}_{p k}(s k)$
- Consider $F_{c_{1}, f_{2}}(s k)=f_{2}\left(\operatorname{Dec}_{s k}\left(c_{1}\right)\right)$
$>$ Let $c_{2}=\operatorname{Eval}_{p k}\left(F_{c_{1}, f_{2}}, c^{*}\right)$

1-Hop \rightarrow multi-Hop HE

- Drawback: $\left|c_{\mathrm{i}}\right|$ grows exponentially with i :
$>\left|F_{c_{1-1}, f_{i}}\right| \geq\left|c_{i-1}\right|+\left|f_{i}\right|$
$>\left|c_{\mathrm{i}}\right|=\left|E \operatorname{Eal} p_{p k}\left(F_{c_{i-1}, f_{i}} c^{*}\right)\right| \geq \operatorname{poly}(\mathrm{n})\left(\left|c_{i-1}\right|+\left|f_{i}\right|\right)$
- Does not happen if underlying scheme is compact

Or even $\left|\operatorname{Eval}_{p k}\left(F_{c_{i-1}, f_{i}} c^{*}\right)\right|=\left|c_{i-1}\right|+\operatorname{poly}(\mathrm{n})\left|f_{i}\right|$

Other Constructions

- Private 1-hop HE + Compact 1-hop HE
\rightarrow Compact, Private 1-hop HE
\rightarrow Compact, Private multi-hop HE
- A direct construction of multi-hop HE from Yao's protocol

Summary

- Homomorphic Encryption is useful
> Especially multi-hop HE
- A method for constructing HE schemes from linear ECCs in rings
$>$ Two ($+\varepsilon$) known instances so far
- Connection to two-message protocols for secure computation

Thank You

