On Homomorphic Encryption and Secure Computation

Shai Halevi

IBM|NYU|Columbia Theory Day, May 7, 2010

Wouldn't it be nice to be able to...

- O Encrypt my data in the cloud
- While still allowing the cloud to search/sort/edit/... this data on my behalf
- Keeping the data in the cloud in encrypted form
 - Without needing to ship it back and forth to be decrypted

Wouldn't it be nice to be able to...

- O Encrypt my queries to the cloud
- While still allowing the cloud to process them
- Cloud returns encrypted answers
 - that I can decrypt

Directions

- From: 19 Skyline Drive, Hawothorne, NY 10532, USA
- To: Columbia University

\$kjh9*mslt@na0 &maXxjq02bflx m^00a2nm5,A4. pE.abxp3m58bsa (3saM%w,snanba nq~mD=3akm2,A Z,ltnhde83|3mz{n dewiunb4]gnbTa* kjew^bwJ^mdns0

Part I: Constructing Homomorphic Encryption

Privacy Homomorphisms [RAD78]

Some examples:

- "Raw RSA": $c \leftarrow x^e \mod N$ ($x \leftarrow c^d \mod N$) $> x_1^e \times x_2^e = (x_1 \times x_2)^e \mod N$
- GM84: $\operatorname{Enc}(0) \in_{\mathsf{R}} \mathsf{QR}, \operatorname{Enc}(1) \in_{\mathsf{R}} \mathsf{QNR} \text{ (in } Z_N^*)$ $\succ \operatorname{Enc}(x_1) \times \operatorname{Enc}(x_2) = \operatorname{Enc}(x_1 \oplus x_2) \mod N$

More Privacy Homomorphisms

- Mult-mod-p [ElGamal'84]
- o Add-mod-N [Pallier'98]
- NC1 circuits [SYY'00]
- Quadratic-polys mod p [BGN'06]
- Poly-size branching programs [IP'07]
- See Part II for a "different type of solution" for any poly-size circuit [Yao'82,...]

(x,+)-Homomorphic Encryption

It will be really nice to have...

- Plaintext space Z₂ (w/ ops +,x)
- Ciphertext space some ring $\mathcal{R}(w/ops +,x)$
- Homomorphic for both + and x
 - \succ Enc(x_1) + Enc(x_2) in \mathfrak{R} = Enc(x_1 + $x_2 \mod 2$)
 - > Enc(x_1) x Enc(x_2) in \mathcal{R} = Enc(x_1 x x_2 mod 2)
- Then we can compute any function on the encryptions
 - > Since every binary function is a polynomial
- We won't get exactly this, but it's a good motivation

Some Notations

An encryption scheme: (KeyGen, Enc, Dec)
> Plaintext-space = {0,1}
> (pk,sk) ← KeyGen(\$), c←Enc_{pk}(b), b←Dec_{sk}(c)
O Semantic security [GM'84]: (pk, Enc_{pk}(0)) ≈ (pk, Enc_{pk}(1))
≈ means indistinguishable by efficient algorithms

Homomorphic Encryption

- $H = \{ \text{KeyGen, Enc, Dec, Eval} \}$ $c^* \leftarrow \text{Eval}_{pk}(f, c)$
- Homomorphic: $Dec_{sk}(Eval_{pk}(f, Enc_{pk}(x))) = f(x)$
 - \succ ("Fully" Homomorphic: for every function f)
 - \geq Enc_{pk}(f(x)), Eval_{pk}(f, Enc_{pk}(x)) may differ
 - As long as both distributions decrypt to f(x)
- Function-private: Eval_{pk}(f, Enc_{pk}(x)) hides f
 Compact: |Eval_{pk}(f, Enc_{pk}(x))| independent of [f]

(x,+)-Homomorphic Encryption, the Gentry Way [G'09]

Evaluate any function in four "easy" steps

- Step 1: Encryption from linear ECCs
 - > Additive homomorphism
- Step 2: ECC lives inside a ring
 - > Also multiplicative homomorphism
 - >But only for a few operations (i.e., low-degree poly's)
- Step 3: Bootstrapping
 - ➢ Few ops (but not too few) → any number of ops
- Step 4: Everything else

Step One: Encryption from Linear ECCs

 For "random looking" codes, hard to distinguish close/far from code

Many cryptosystems built on this hardness
 >E.g., [McEliece'78, AD'97, GGH'97, R'03,...]

IBM|NYU|Columbia Theory Day

Encryption from linear ECCs

KeyGen: choose a "random" code *C*Secret key: "good representation" of *C*Allows correction of "large" errors
Public key: "bad representation" of *C*Enc(0): a word close to *C*Enc(1): a random word
Far from *C* (with high probability)

An Example: Integers mod p (similar to [Regev'03])

Code determined by an integer p
 Codewords: multiples of p

- Good representation: *p* itself
- o Bad representation:

p

> N = pq, and also many many $x_i = pq_i + r_i$

- Enc(0): subset-sum(x_i 's)+ $r \mod N$
- o Enc(1): random integer mod N

 $r_i \ll p$

Ν

A Different Input Encoding

• Plaintext bit is LSB of dist(c, \mathcal{C}) \geq Enc(0/1): close to \mathcal{C} , distance is even/odd >In our example of integers mod p: • $Enc(b) = 2(subset-sum(x_i's)+r) + b \mod N$ $- \operatorname{Dec}(c) = (c \mod p) \mod 2$ p is odd • **Thm:** If " \mathscr{C} co-prime with $2^{\prime\prime}$, then Enc(0), Enc(1) indistinguishable $\succ w$ is near- $\mathcal{C}/random \rightarrow 2w+b$ is Enc(b)/random

Additive Homomorphism

o c₁+c₂ = (codeword₁+codeword₂) +2(r₁+r₂)+b₁+b₂
> codeword₁+codeword₂ ∈ C
> If 2(r₁+r₂)+b₁+b₂ < min-dist/2, then it is the distance between c₁+c₂ and C
> dist(c₁+c₂, C) = b₁+b₂ mod 2
• Additively-homomorphic while close to C

Step 2: ECC Lives in a Ring *R*

• What happens when multiplying in $\boldsymbol{\mathcal{R}}$:

$$\succ c_1c_2 = (\text{codeword}_1 + 2r_1 + b_1) \times (\text{codeword}_2 + 2r_2 + b_2)$$

$$+ (2r_1+b_1)(2r_2+b_2)$$

• If:

$$- codeword_1 X + Y codeword_2 \in \mathcal{C}$$

$$- (2r_1+b_1)(2r_2+b_2) < min-dist/2$$

• Then

$$- codeword_1 X + Y codeword_2 \in \mathcal{C}$$

$$\succ dist(c_1c_2, \mathcal{C}) = (2r_1+b_1)(2r_2+b_2) = b_1b_2 \mod 2$$

Integers Rings [vDGHV'10]

- Recall mod-*p* scheme: $c_i = q_i p + 2r_i + b_i \pmod{N=qp}$ > Parameters: $|r_i|=n$, $|p|=n^2$, $|q|=|q_i|=n^5$
- $c_1 + c_2 \mod N = (q_1 + q_2 \kappa q)p + 2(r_1 + r_2) + (b_1 + b_2)$ $\Rightarrow \operatorname{sum mod} p = 2(r_1 + r_2) + (b_1 + b_2)$

•
$$c_1 \ge c_2 \mod N = (c_1q_2 + q_1c_2 - q_1q_2 - \kappa q)p + 2(2r_1r_2 + r_1m_2 + m_1r_2) + b_1b_2$$

 \Rightarrow product mod $p = 2(2r_1r_2 + ...) + b_1b_2$

• Can evaluate polynomials of degree ~ *n* before the distance from *C* exceeds *p*/2

Integers Rings [vDGHV'10]

Thm: "Approximate GCD" is hard → Enc(0), Enc(1) are indistinguishable O Apprixmate-GCD: Given N=qp and many x_i = pq_i + r_i, hard to recover p

Polynomial Rings [G'09]

• \mathcal{R} = polynomial ring modulo some f(x) \succ E.g., $f(x) = x^n + 1$ $\circ \mathscr{C}$ is an ideal in \mathscr{P} \succ E.g., random g(x), $\mathcal{C}_{g} = \{gxh \mod f : h \in \mathbb{R}\}$ *C* is also a lattice \geq Good representation: g itself Bad representation: Hermite-Normal-Form • If g has t-bit coefficients, can evaluate polynomials of degree $O(t/\log n)$

Polynomial Rings [G'09]

Thm: Bounded-Distance Decoding in ideal lattices is hard → Enc(0), Enc(1) are indistinguishable

• Bounded-Distance-Decoding: Given *x* close to the lattice, find dist(*x*, lattice)

Matrix Rings* [GHV'10]

• $\mathcal{R} = \operatorname{ring} \operatorname{of} m \mathbf{x} m$ matrices over Z_q

> $q = poly(n), m > n \log q$ (*n* security-parameter)

- \mathcal{C} has low-rank matrices mod q (rank=n)
 - > A is a random $n \times m$ matrix, $\mathcal{C}_A = \{AX : X \in \mathbb{R}\}$
 - >Bad representation: A itself
 - Sood representation: full rank T_{mxm} (over Z), small entries, $TA = 0 \mod q$
- Problem: \mathcal{C}_A is left-ideal, but not right-ideal
 - Can still evaluate quadratic formulas, no more

Matrix Rings* [GHV'10]

Thm: Learning with Errors hard → Enc(0), Enc(1) are indistinguishable Learning with Errors: Given A, Ax+e (random A,x, small error e), find x

• So far, can evaluate low-degree polynomials

 $\frac{x_1}{x_2}$...

 $P(x_1, x_2, ..., x_t)$

• So far, can evaluate low-degree polynomials

• Can eval $y=P(x_1,x_2,...,x_n)$ when x_i 's are "fresh"

• But y is an "evaluated ciphertext"

Can still be decrypted

> But eval Q(y) will increase noise too much

 X_2

 X_{t}

• So far, can evaluate low-degree polynomials

 Bootstrapping to handle higher degrees:
 For ciphertext c, consider D_c(sk) = Dec_{sk}(c)
 ≻ Hope: D_c(*) is a low-degree polynomial in sk
 ≻ Then so are A_{c1},c2(sk) = Dec_{sk}(c1) + Dec_{sk}(c2) and Mc1,c2(sk) = Dec_{sk}(c1) × Dec_{sk}(c2)

 x_1

 $X_{\rm f}$

• Include in the public key also $Enc_{pk}(sk)$

• Homomorphic computation applied only to the "fresh" encryption of *sk*

Step 4: Everything Else

- Cryptosystems from [G'09, vDGHV'10] cannot handle their own decryption as-is
- Apply some tricks to "squash" the decryption procedure

Part II: Homomorphic Encryption vs. Secure Computation

Secure Function Evaluation (SFE)

Client Alice has data x

Server Bob has function f

Alice wants to learn f(x)

- **1**. Without telling Bob what *x* is
- 2. Bob may not want Alice to know f
- 3. Client Alice may also want server Bob to do most of the work computing f(x)

Two-Message SFE [Yao'82,...]

- Many different instantiations are available
 Based on hardness of factoring/DL/lattices/...
- Alice's x and Bob's f are kept private
- But Alice does as much work as Bob
 Bob's reply of size poly(n) x (|f|+|x|)

Recall: Homomorphic Encryption

- $H = \{ KeyGen, Enc, Dec, Eval \}$
- Semantic security: $(pk, Enc_{pk}(0)) \approx (pk, Enc_{pk}(1))$
- Homomorphic: $Dec_{sk}(Eval_{pk}(f, Enc_{pk}(x))) = f(x)$
 - \succ ("Fully" Homomorphic: for every function f)
 - \geq Enc_{pk}(f(x)), Eval_{pk}(f, Enc_{pk}(x)) may differ
 - As long as both distributions decrypt to f(x)
- Function-private: Eval_{pk}(f, Enc_{pk}(x)) hides f
 Compact: [Eval_{pk}(f, Enc_{pk}(x))] independent of [f]

Aside: a Trivial Solution

• $Eval(f,c) = \langle f,c \rangle, Dec^{*}(\langle f,c \rangle) = f(Dec(c))$

- Neither function-private, nor compact
- Not very useful in applications

HE → Two-Message SFE

Alice encrypts data x
>sends to Bob c ← Enc(x)
Bob computes on encrypted data
>sets c* ← Eval(f, c)
>c* is supposed to be an encryption of f(x)
>Hopefully it hides f (function-private scheme)
Alice decrypts, recovers y ← Dec(c*)

Two-Message SFE → HE

• Roughly:

- >Alice's message $c \leftarrow SFE1(x)$ is Enc(x)
- >Bob's reply $r \leftarrow SFE2(f,c)$ is Eval(f,c)
- Not quite public-key encryption yet
 - >Where are (pk, sk)?
 - >Can be fixed with an auxiliary PKE scheme

Two-Message SFE → HE

Add an auxiliary encryption scheme > with (*pk*,*sk*)

Two-Message SFE → HE

Recall: |r| could be as large as poly(n)(|f|+|x|)
 Not compact

A More Complex Setting: i-Hop HE [GHV10b]

- c_1 is not a fresh ciphertext
 - > May look completely different
- Can Charlie process it at all?
 - > What about security?

Multi-Hop Homomorphic Encryption

H = {KeyGen, Enc, Eval, Dec} as before *i*-Hop Homomorphic (*i* is a parameter)

$$x \rightarrow \text{Enc}_{pk}(x) \xrightarrow{c_0} \text{Eval}_{pk}(f_1,c_0) \xrightarrow{c_1} \text{Eval}_{pk}(f_2,c_1) \xrightarrow{c_2} \cdots \xrightarrow{c_j} \text{Dec}_{sk}(x) \rightarrow y$$
Any number $j \le i$ hops
$$y = f_j(f_{j-1}(\dots,f_1(x),\dots)) \text{ for any } x, f_1,\dots,f_j$$

Similarly for *i*-Hop function-privacy, compactness
Multi-Hop: *i*-Hop for any *i*

1-Hop → multi-Hop HE

• (KeyGen, Enc, Eval, Dec) is 1-Hop HE Can evaluate any single function on ctxt • We have $c_1 = \text{Eval}_{pk}(f_1, c_0)$, and some other f_2 Bootstrapping: • Include with pk also $c^*=Enc_{nk}(sk)$ • Consider $F_{c_1,f_2}(sk) = f_2(\operatorname{Dec}_{sk}(c_1))$ \succ Let c_2 =Eval_{*pk*}(F_{c_1,f_2}, c^*)

1-Hop → multi-Hop HE

• Drawback: $|c_i|$ grows exponentially with *i*:

 $\succ |F_{c_{i-1},f_i}| \ge |c_{i-1}| + |f_i|$

 $> |c_i| = |Eval_{pk}(F_{c_{i-1},f_i}, c^*)| \ge poly(n)(|c_{i-1}|+|f_i|)$

• Does not happen if underlying scheme is compact Or even $|Eval_{pk}(F_{c_{i-1},f_i}, c^*)| = |c_{i-1}| + poly(n)|f_i|$

Other Constructions

• Private 1-hop HE + Compact 1-hop HE

- → Compact, Private 1-hop HE
- ➔ Compact, Private multi-hop HE
- A direct construction of multi-hop HE from Yao's protocol

Summary

Homomorphic Encryption is useful
 Especially multi-hop HE
 A method for constructing HE schemes from linear ECCs in rings
 Two (+ε) known instances so far
 Connection to two-message protocols for construction

secure computation

