Introduction to
 Cryptographic Multilinear Maps

Sanjam Garg, Craig Gentry, Shai Halevi
IBMT.J.Watson Research Center

Multilinear Maps (MMAPs)

- A technical tool
- Think "trapdoor-permutations" or "smooth-projective-hashing", or "randomized-encoding"
- More a technique than a single primitive
- Several different variants, all share the same core properties but differ in details
- Extension of bilinear maps [J00,SOK00,BFOI]
- Bilinear maps are extensions of DL-based crypto
- Took the crypto world by storm in 2000, used in dozens of applications, hundreds of papers
- Applications from IBE to NIZK and more

DL/DDH and Bilinear Maps

- Why is DDH such a "gold mine"?
- You can take values a_{i} and "hide them" in $g^{a_{i}}$
- Some tasks are still easy in this representation
- Can compute any linear/affine function of the a_{i} 's, and check if $a_{i}=0$
- Other tasks are seemingly hard
- E.g., computing/checking quadratic functions
- Bilinear maps are similar: we can compute quadratics, while cubics seem hard
- Turns out to be even more useful

Why Stop at Two?

- Can we find groups that would let us compute cubics but not $4^{\text {th }}$ powers?
- Or in general, upto degree k but no more?
\rightarrow Cryptographic multilinear maps (MMAPs)
- Even more useful than bilinear
- [Boneh-Silverberg'03] explored some applications of MMAPs
- Also argued that they are unlikely to be constructed similarly to bilinear maps

The [GGH'I3] Approach

- An "approximate" cryptographic MMAPs
- Degree- k functions, zero-test are easy
- Some degree- $(k+1)$ functions seem hard
- Enabling many new applications
- Built using "FHE techniques"
- From a variant of the NTRU HE scheme
- Another construction in [CLT'I3]
- Using a variant of "HE over integers" instead
- All degree- $(k+1)$ functions seem hard

This Talk

- An overview of [GGH'I3]
- Some details
- Which degree- $(k+1)$ functions are easy/hard
- Source- vs. target-group assumptions
- Examples of using it:
- $(k+1)$-partite key exchange [J00,BS03]
- Witness encryption [GGSW'I3]
- Full domain hash [FHPS'I3, HSW'I3]
- Obfuscation (just a hint)

THE [GGH'I3] CONSTRUCTION

"Somewhat Homomorphic" Encryption (SWHE) vs. MMAPs
 SWHE
 MMAPs

- Encrypting $\mathrm{c}_{a}=\mathrm{E}(a)$
\checkmark Computing low-deg polynomials of the c_{a} 's is easy
? Fuzzy threshold for easy vs. hard?
\times Cannot test anything
- But if you have skey you can recover a itself
- "Encoding" $e_{a}=g^{a}$
\checkmark Computing low-deg polynomials of the e_{a} 's is easy
\checkmark Sharp threshold for easy vs. hard
\checkmark Can test for zero

Main Ingredient:Testing for Zero

- To be useful, we must be able to test if two degree- k expressions are equal - Using homomorphism, that's the same as testing if a degree-k expression equals zero
- Our approach: augment a SWHE scheme with a "handicapped" secret key
- Can test if a ciphertext decrypts to zero, but cannot decrypt arbitrary cipehrtexts
- Assuming that the plaintext-space is large
- Called a "zero-test parameter"

A Few Words About Levels

- A "level- k " ciphertext encrypts a degree- k expression
- Fresh cipehrtexts, $c_{a}=\operatorname{Enc}(a)$, are at level 1 $\circ \operatorname{Level}\left(c \boxtimes c^{\prime}\right)=\operatorname{Level}(c)+\operatorname{Level}\left(c^{\prime}\right)$ - Level $\left(c \boxplus c^{\prime}\right)=\max \left\{\operatorname{Level}(c), \operatorname{Level}\left(c^{\prime}\right)\right\}$
- Contemporary SWHE schemes are "naturally leveled"
- Often a ciphertext in these schemes would be tagged with its level

A Few Words About Levels (2)

- A zero-test parameter that works for all levels, would give a "black-box field"
- Could be useful, but it's not MMAPs
- Also we don't know how to get one
- Our zero-test parameter only works for ciphertexts at one particular level k
- The zero-test level is a parameter, equal to the multi-linearity degree that we want to implement

Our Goal ("approximate MMAPs")

k-Graded Encoding Scheme
a_{i} 's from some large finite field/ring

- KeyGen(k): Generating public parameters
- Encode: level-1 encoding of plaintext a_{i} 's
- Plaintext a_{i} 's themselves are considered "level-0"
- Encoding can be randomized
- Arithmetic: addition \& multiplication
$\circ \operatorname{Level}\left(c \boxtimes c^{\prime}\right)=\operatorname{Level}(c)+\operatorname{Level}\left(c^{\prime}\right)$
$\circ \operatorname{Level}\left(c \boxplus c^{\prime}\right)=\max \left\{\operatorname{Level}(c), \operatorname{Level}\left(c^{\prime}\right)\right\}$
- Zero-test: does c encode 0?
- Only works for level- k encoding

Some Variations

- Can extract "random canonical representation" of a from any level- k encoding of a
- Can only encode random a_{i} 's, not specific ones
- KeyGen outputs a matching secret key
- Secret key may be needed for encoding
- Encoding can be re-randomizable
- Given any level- i encoding of a, output a random level- i encoding of the same a
- More complicated level structure than just $0,1,2, \ldots$
- E.g., levels are vectors, with partial ordering
- Yields an extension of "asymmetric maps"

Overview of [GGH'I3]

- Start from an NTRU-like SWHE scheme
- Semantic-security under some "reasonable assumptions"
- Add zero-test parameter
- Some things that were hard now become easy
- Other things are still seemingly hard
- But hardness assumptions are stronger, uglier
- Separating hard from easy is challenging

Starting From NTRU-like SWHE

- All ops are in some polynomial rings
$\circ R=Z[X] / F(X), R_{q}=R / q R$
- Secret key is $g, z \in R_{q}$

In NTRU $g=3$
${ }^{\circ} g$ is short $(|g| \ll q), z$ is random in R_{q}
\circ Plaintext elements are from $R_{g}=R / g R$

- An encryption of a is $c_{a}=\left[e_{a} / z\right]_{q}$
- $\left|e_{a}\right| \ll q$ and $e_{a}=a(\bmod g)$
- To decrypt set $a \leftarrow\left[c_{a} \cdot z\right]_{q} \bmod g$

Homomorphic NTRU

- Level- i encryption of a is $c_{a}^{(i)}=\left[e_{a} / z^{i}\right]_{q}$ - $\left|e_{a}\right| \ll q$ and $e_{a}=a(\bmod g)$
- To decrypt set $a \leftarrow\left[c_{a} \cdot z^{i}\right]_{q} \bmod g$
- Can add, multiply ciphertexts in R_{q}

$$
\cdot\left[c_{a}^{(i)}+c_{b}^{(i)}\right]_{q}=\left[\left(e_{a}+e_{b}\right) / z^{i}\right]_{q}=c_{a+b}^{(i)}
$$

- Because $\left|e_{a}+e_{b}\right| \ll q$ and $e_{a}+e_{b}=a+b(\bmod g)$
- $\left[c_{a}^{(i)} \cdot c_{b}^{(j)}\right]_{q}=\left[e_{a} e_{b} / z^{i+j}\right]_{q}=c_{a b}^{(i+j)}$
- Because $\left|e_{a} e_{b}\right| \ll q$ and $e_{a} e_{b}=a b(\bmod g)$
- as long as numerator remains $\ll q$

The Public Key

- Let $f_{0}=c_{0}^{(1)}=\frac{\alpha g}{z}, f_{1}=c_{1}^{(1)}=\frac{\beta g+1}{z}$ - $|\alpha g|,|\beta g+1| \ll q$
- To encrypt a small m, choose small r, set $c_{m}^{(1)}=r f_{0}+m f_{1}=\frac{(r \alpha+m \beta) g+m}{z}$
- If m is Gaussian with suitable parameter then $|m| \ll q$ and m is \sim uniform $\bmod g$
- So we can encrypt random R_{g} elements
- But not any pre-set element

Zero-Test Parameter

- Need to publish information to help recognize elements of the form $r g / z^{k}$
- But not of the form $(r g+x) / z^{k}$
- Also not of the form $r g / z^{k \prime}$ for $k^{\prime}>k$
- First idea: publish $p_{\mathrm{zt}}=z^{k} / g$
- $\left[p_{z t} \cdot r g / z^{k}\right]_{q}=r$, with $|r| \ll q$
- But $\left[p_{z t} \cdot(r g+x) / z^{k}\right]_{q}=[r+x / g]_{q}$, and x / g entails wraparound $\bmod q$
- So typically $\left|[r+x / g]_{q}\right| \approx q$

Zero-Test Parameter (2)

- Main problem is that z^{k} / g enables also zero-testing at levels $>k$
- E.g., $\left[\frac{r g}{z^{2 k-1}} \cdot f_{0} \cdot\left(\frac{z^{k}}{g}\right)^{2}\right]_{q}=r \cdot \alpha, \quad|r \cdot \alpha| \ll q$
- To counter this, set $\boldsymbol{p}_{\mathrm{zt}}=\boldsymbol{h} \cdot \mathrm{z}^{k} / \boldsymbol{g}$
- With $|h| \approx \sqrt{ } q$
- Now squaring $p_{z \mathrm{t}}$ already yields wraparound
- Zero-testing procedure:
- Check if $\left|\left[p_{z t} \cdot c\right]_{q}\right|<q^{3 / 4}$

Correctness of Zero-Testing

- If $\mathrm{c}=r g / z^{k}$ encodes zero at level k then $h z^{k} / g \cdot r g / z^{k}=h r(\bmod q)$
- We know that $|r g|<q^{1 / 8}$, since all valid encodings have small numerators
- Hence also $|r|<q^{1 / 8+\epsilon}$
- This assumes g^{-1} is small in the field of fractions
- Since $|h|<q^{1 / 2+\epsilon}$ then $|h r|<q^{3 / 4}$
- $\left[h z^{k} / g \cdot r g / z^{k}\right]_{q}=h r$ and $|h r|<q^{3 / 4}$ so the zero-test pass

Correctness of Zero-Testing (2)

- The converse is a bit more complicated:
- Let g, h be such that the two ideals $g R, h R$ are co-prime
Lemma: Let e be s.t. $|e h|<q / 2$ and let $w=[e h / g]_{q}$. If w is small enough,
$|w g|<q / 2$, then $e \in g R$
\circ i.e., $e=g r$ for some r
Proof: $w g=e h$ over R (since both $<q / 2$) and since h, g co-prime then $g \mid e$.

Correctness of Zero-Testing (3)

Lemma: Let e be s.t. $|e h|<q / 2$ and let $w=[e h / g]_{q}$. If w is small enough,
$|w g|<q / 2$, then $e \in g R$

Corollary: if e / z^{k} is a valid level- k encoding $(\rightarrow|e h|<q / 2)$ and it passes zero-test ($\rightarrow w$ is small), so it is an encoding of zero

Security of Zero-Testing

- This Zero-Test procedure provides functionality, not security
- Easy to come up with an "invalid encoding" that passes the zero test.
- If we need security, publish many $p_{z t}$'s for many different mid-size h 'es
- Check $\left|\left[p_{z t} \cdot c\right]_{q}\right|<q^{3 / 4}$ for all of them
- Can prove that whp over the h 'es, only valid zero-encodings pass this test.

What's Hard

- Some degree- $k+1$ functions seem hard to compute, or even test

Multilinear-DDH (MDDH)

- For $k+1$ level-1 encoding of random elements, $c_{a_{0}}^{(1)}, \ldots, c_{a_{k}}^{(1)}$,
- and another level- k encoding $c_{b}^{(k)}$,
- hard to distinguish $b=a_{0} \cdot \ldots \cdot a_{k}(\bmod g)$ from random b

What's Not Hard

- Other degree- $k+1$ functions are easy

Multilinear-DDH'

- For $k+1$ level- 1 encoding of random elements, $c_{a_{0}}^{(1)}, \ldots, c_{a_{k}}^{(1)}$,
- and another level-1 encoding $c_{b}^{(1)}$,
- easy to decide if $b=a_{0} \cdot \ldots \cdot a_{k}(\bmod g)$

What's the Difference?

- A "target group" problem includes some elements encoded at the highest level (k)
- Such problems are seemingly hard in these encodings
- A "source group" problem includes only elements encoded at levels $\leq k$
- Include things like decision-linear assumption
- These problems are easy, assuming that we indeed provide the public-key elements f_{0}, f_{1}

Why the Difference?

- These encodings are subject to a "weak discrete-logarithm" attacks. Given:
- Level- i encoding of some a, and
- Level-j encoding of 0 (e.g., f_{0}), with $i+j \leq k$
- Can compute "in the clear" $a^{\prime} \in a+g R$
- I.e., $a^{\prime}=a+g r$ for some r
- a^{\prime} is not small, so you cannot re-encode it at level 1 and break MDDH or similar
- But if you have $g^{\prime}, a_{0}^{\prime}, \ldots, a_{k}^{\prime}$ and b^{\prime}, you can check whether $b^{\prime}=a_{0}^{\prime} \cdot \ldots \cdot a_{k}^{\prime} \bmod g^{\prime}$

Dealing with "Weak DL"Attacks

- Some applications only rely on "target group" assumptions
- Those are not affected by the attack
- More applications can get by without providing f_{0}, f_{1}, so attack does not apply
- Or use other MMAPs
- [CTL'I3] seemingly not susceptible to weak-DL
- Can perhaps "immunize" [GGH'I3] against it
- Using GGH-encoded matrices and their eigenvalues

Computation Problems

- The source/target distinction is about decision problems
- Computation problems have their own issues
- Roughly speaking, anything that requires division is hard
- But division in the ring R_{q} is easy: from $c_{a_{1}}^{(i)}, c_{a_{2}}^{(j)}$ we can compute $d=\left[c_{a_{1}}^{(i)} / c_{a_{2}}^{(j)}\right]_{q}$
- d is unlikely to be a valid encoding, can perhaps be discarded using the "secure zero-test"

APPLICATIONS OF MMAPS

Application I:

($k+1$)-partite key exchange

- Public parameters include $f_{0}, f_{1}, p_{z t}$
- P_{i} draws small m_{i}, r_{i}, publishes the level-1 encoding $u_{i}=c_{m_{i}}^{(1)}=r_{i} f_{0}+m_{i} f_{1}$
- P_{i} computes level- k encoding of product

$$
s_{i}=m_{i} \cdot \prod_{j \neq i} u_{j}
$$

- All parties have level-k encodings of the same thing
- Indistinguishable from encoding of a random element, under MDDH
- How to get a shared secret key out of it?

Extracting Canonical Representation

- All of s_{0}, \ldots, s_{k} encode the same thing
$\rightarrow\left[p_{z t} s_{i}-p_{z t} s_{j}\right]_{q}=\left[p_{z t}\left(s_{i}-s_{j}\right)\right]_{q}$ is small $\forall i, j$
\rightarrow Roughly use MSBs of $\left[p_{z t} \cdot s_{i}\right]_{q}$ as a shared key
- Public params also include
- Seed σ of strong randomness extractor
- Random element $\delta \in \mathrm{R}_{q}$
- Shared key computed as

$$
K_{i}=\operatorname{ext}_{\sigma}\left(M S B\left[\delta+p_{z t} \cdot s_{i}\right]_{q}\right)
$$

- Whp over δ, all K_{i} 's are equal
- Indistinguishable to observer from random bits

Application II:Witness Encryption

- "Encryption without any key"
- Relative to an arbitrary riddle
- Defined here relative to exact-cover (XC)
- Use NP-hardness to get any NP statement
- Message encrypted wrt to XC instance
- Encryptor need not know a solution, or even if a solution exists
- Anyone with a solution can decrypt
- Semantic-security if no solution exists

Recall Exact Cover

- Instance: A universe $[n]$ and a collection of subsets $S_{i} \subset[n], i=1, \ldots, m$
- A solution: sub-collection of the S_{i} 's that forms a partition of [n], i.e.,
- Subsets are pairwise disjoint, and
- Their union is the entire $[n]$.

The [GGSWI3] Construction

- On an XC instance (n, S_{1}, \ldots, S_{m}) and a message M
- Use n-linear maps
- Choose n random elements a_{1}, \ldots, a_{n}
- For every subset $S_{i}=\left\{j_{1}, \ldots, j_{t}\right\}$, publish a level- t encoding $c_{A_{i}}^{(t)}$ of $A_{i}=a_{j_{1}} \cdot \ldots \cdot a_{j_{t}}$
- Use a level- n encoding $c_{U}^{(n)}$ of $U=a_{1} \cdot \ldots \cdot a_{n}$ to encrypt, by publishing the ciphertext $C=\operatorname{ext}_{\sigma}\left(M S B\left[\delta+p_{z t} \cdot c_{U}^{(n)}\right]_{q}\right) \oplus M$

The [GGSW] Construction (2)

- If $S_{i_{1}}, \ldots, S_{i_{k}}$ is a solution, then multiplying the corresponding $c_{A_{i}}^{\left(t_{i}\right)}$,s we get a level- n encoding of U, then we can decrypt
- Every non-solvable instance defines a computational problem
- Distinguish a level- n encoding of U from a level- n encoding of random
- We assume all these problems to be hard - Is this a reasonable assumption to make?

Application III: Full-Domain Hash

- Consider the following hash function, $H:\{0,1\}^{\ell} \rightarrow$ level $-\ell$-encodings:
- Public version of Naor-Reingold PRF
\circ Let $a_{1,0}, a_{1,1}, a_{2,0}, a_{2,1}, \ldots, a_{\ell, 0}, a_{\ell, 1}$ be random elements, and publish their level-1 encoding $\overrightarrow{\boldsymbol{c}}=\left\{c_{a_{i, b}}^{(1)}: i=1, \ldots, \ell, b=0,1\right\}$,

$$
H_{\vec{c}}(X)=c_{a_{1, X_{1}}}^{(1)} \boxtimes c_{a_{2, X_{2}}}^{(1)} \ldots \boxtimes c_{a_{l, X_{\ell}}}^{(1)}
$$

- What can you do with it?

BLS-type Signatures [HWSI3]

- Use $k=\ell+1$, publish also $c_{a_{o}}^{(1)}$
${ }^{\circ} a_{0}$ is the secret key
- $\sigma=\operatorname{Sig}(X)=a_{0} \times H_{\vec{c}}(X)$
- Level- ℓ encoding of an ($\ell+1$)-product
- Verify using zero-test:

$$
\left(\sigma \boxtimes f_{1}\right)=?=\left(c_{a_{o}}^{(1)} \boxtimes H_{\vec{c}}(X)\right)
$$

- Can be aggregated, made identity-based

"Programmable" Hash Functions [FHPSI 3]

- For any fixed "basis" $b_{1}, \ldots, b_{k}, b^{*}$ (encoded at level 1), can generate a random \vec{c} as above with a trapdoor $t d$ s.t.:
- Using $t d$ we can find for any X a "representation of $H_{\vec{c}}(X)$ in this basis"
- $H_{\vec{c}}(X)=\alpha_{X} \boxtimes\left(b_{1} \boxtimes \cdots \boxtimes b_{k}\right)+B_{X} \boxtimes b^{*}$
- α at level zero, B at level $k-1$
- Roughly, for all but a random $1 /$ poly fraction of the X 'es, we have $\alpha_{X}=0$
- This is useful for "partition-type" proofs of security

Obfuscation [GGHRSWI3]

- Goal: take an arbitrary circuit and "encrypt it", so that:
- Can still evaluate the result on any input
- But "not much else"
- Formulating "not much else" is hard
- [BGIRSVYOI] show that some natural formulations cannot be met
- Also defined the weaker notion of "indistinguishability Obfuscation" (iO):
- If C_{1}, C_{2} compute the same function, then $\operatorname{OBF}\left(C_{1}\right) \approx \operatorname{OBF}\left(C_{2}\right)$

iO for $N C^{1}$

- Begin with a corollary of Barrington's theorem, we can recognize $\mathrm{L} \in N C^{1}$ via matrix multiplication:
${ }^{\circ} C_{L}$ represented by a sequence of matrices of length $\exp \left(\operatorname{depth}\left(C_{L}\right)\right)$
- Input x determines a sub-sequence
$\circ x \in L$ iff their product is the identity

Obfuscating C_{L}

- Randomize the matrices for C_{L}
- How to randomize is the hard part, need to counter several attacks
- Provide level-1 encoding of matrices
- To evaluate on x
- Choose a subset and multiply the encoding
- Use zero-testing to check for identity

Security

- Mostly heuristic, but supported by generic-group arguments
- Every pair of circuits C_{1}, C_{2}, defines a decision problem
- We assume that they are all hard
- These are all source-group assumptions
- Since the matrices are encoded at level 1
- But we are not giving f_{0}, f_{1}, so the weak-DL attack does not apply

Summary

- Can approximate cryptographic MMAPs - Using SWHE with "handicapped secret key"
- Known constructions from NTRU,"integer HE"
- Can we do the same thing from other schemes?
- Enabling many new applications
- But hardness assumptions are strong, "ugly"
- In desperate need of a coherent theory
- Practical performance lacking
- Worse than the [Gen09] HE scheme

