Introduction to

Cryptographic Multilinear Maps

Sanjam Garg, Craig Gentry, Shai Halevi
IBM T.J. Watson Research Center

Multilinear Maps (MMAPs)

e A technical tool

> Think “trapdoor-permutations” or “smooth-
projective-hashing”, or “randomized-encoding”

> More a technique than a single primitive

Several different variants, all share the same core
properties but differ in details

* Extension of bilinear maps [J00,SOKO00,BFO0I]

o Bilinear maps are extensions of DL-based crypto

> Took the crypto world by storm in 2000, used in
dozens of applications, hundreds of papers

o Applications from IBE to NIZK and more

DL/DDH and Bilinear Maps
* Why is DDH such a “gold mine™?

> You can take values a; and “hide them” in g%

> Some tasks are still easy in this representation

Can compute any linear/affine function of the a;’s,
and check if a; = 0

> Other tasks are seemingly hard
E.g., computing/checking quadratic functions
* Bilinear maps are similar: we can compute

quadratics, while cubics seem hard
Turns out to be even more useful

Why Stop at Two!?

e Can we find groups that would let us
compute cubics but not 4™ powers?

> Or in general, upto degree k but no more!?

=>» Cryptographic multilinear maps (MMAPs)
> Even more useful than bilinear

* [Boneh-Silverberg’03] explored some
applications of MMAPs

° Also argued that they are unlikely to be
constructed similarly to bilinear maps

The [GGH’I3] Approach

* An “approximate” cryptographic MMAPs
> Degree-k functions, zero-test are easy
> Some degree-(k + 1) functions seem hard
> Enabling many new applications
e Built using “FHE techniques”
> From a variant of the NTRU HE scheme

* Another construction in [CLT’ | 3]
> Using a variant of “HE over integers” instead
o All degree-(k + 1) functions seem hard

This Talk
* An overview of [GGH’| 3]

> Some details
> Which degree-(k + 1) functions are easy/hard
Source- vs. target-group assumptions
* Examples of using it:
° (k + 1)-partite key exchange [J00,BS03]
> Witness encryption [GGSW’ | 3]
° Full domain hash [FHPS’ 13, HSW’ | 3]
> Obfuscation (just a hint)

" THE [GGH’13]
CONSTRUCTION

“Somewhat Homomorphic”
Encryption (SWHE) vs. MMAPs

SWHE MMAPs
* Encrypting c, = E(a) ° “Encoding” e, = g¢
v Computing low-deg v Computing low-deg
polynomials of the ¢,’s polynomials of the e,’s
is easy is easy
? Fuzzy threshold for v Sharp threshold for
easy vs. hard? easy vs. hard

x Cannot test anything v Can test for zero

* But if you have skey you
can recover a itself

Main Ingredient: Testing for Zero

* To be useful, we must be able to test if
two degree-k expressions are equal

> Using homomorphism, that’s the same as
testing if a degree-k expression equals zero
e Our approach: augment a SWHE scheme
with a “handicapped” secret key

> Can test if a ciphertext decrypts to zero, but
cannot decrypt arbitrary cipehrtexts

Assuming that the plaintext-space is large
o Called a “zero-test parameter”

A Few Words About Levels

* A“level-k” ciphertext encrypts a
degree-k expression

° Fresh cipehrtexts, c,=Enc(a), are at level 1
o Level(c X ¢') = Level(c) + Level(c')

o Level(c

¢') = max{Level(c), Level(c")}

» Contemporary SWHE schemes are
“naturally leveled”

> Often a ciphertext in these schemes would be
tagged with its level

A Few Words About Levels (2)

* A zero-test parameter that works for all
levels, would give a “black-box field”

> Could be useful, but it’'s not MMAPs

> Also we don’t know how to get one

e Our zero-test parameter only works for
ciphertexts at one particular level k

> The zero-test level is a parameter, equal to
the multi-linearity degree that we want to
implement

Our Goal (“approximate MMAPs™)

. a;‘s from some
k-Graded Encoding Scheme | iarge finite field/ring
» KeyGen(k): Generating public parameters

e Encode: level-1 encoding of plaintext a;’s

> Plaintext a;’s themselves are considered “level-0”
> Encoding can be randomized

e Arithmetic: addition & multiplication

o Level(c X ¢") = Level(c) + Level(c')

> Level(c HH ¢') = max{Level(c), Level(c")}
o Lero-test: does ¢ encode 0!

> Only works for level-k encoding

Some Variations

e Can extract “random canonical representation”
of a from any level-k encoding of a

e Can only encode random a;’s, not specific ones
» KeyGen outputs a matching secret key

> Secret key may be needed for encoding
e Encoding can be re-randomizable

> Given any level-i encoding of a, output a random level-i
encoding of the same a

e More complicated level structure than just 0,1,2, ...
> E.g., levels are vectors, with partial ordering
° Yields an extension of “asymmetric maps”

Overview of [GGH’| 3]

e Start from an NTRU-like SWHE scheme

> Semantic-security under some “reasonable
assumptions”

* Add zero-test parameter
> Some things that were hard now become easy

> Other things are still seemingly hard

But hardness assumptions are stronger, uglier

> Separating hard from easy is challenging

Starting From NTRU-like SWHE

* All ops are in some polynomial rings
° R = Z[X]/F(X), Ry = R/qR

* Secret key is g,z € R 4[e]
° g is short (|g| < q), zis random in R

° Plaintext elements are from R; = R/gR
e An encryption of a is ¢, = e, /2],

° le,| K gand e, = a (mod g)
e To decrypt set a < [c, - z], mod g

Homomorphic NTRU

 Level-i encryption of a is Cc(li) = [ea/zi]q
° leq| K q and e, = a(mod g_)

» To decrypt set a « [Ca : Z‘]q mod g

e Can add, multiply ciphertexts in R,

0 [cc(li) -+ c,gi)]q = [(eq + eb)/zi] (l)

a+b

Because |e, + e, K gand e, + e, = a+ b (mod g)
(D) (J) +j1 _— .(+))
[[eaeb/z‘+f]q =,

Because |eaeb| < g and e, e, = ab (mod g)
* as long as numerator remains < ¢

The Public Key

1
o Let fO = C(l) ag, fl = Cl(l) — 'Bgz-l_
>lagl,lbg + 1] < q
* To encrypt a small m, choose small 7, set

():rf0+mf1_(ra+mﬁ)g+m

Z
o If m is Gaussian with suitable parameter

then |m| «< g and m is ~uniform mod g
° So we can encrypt random R, elements
> But not any pre-set element

Zero-lest Parameter

* Need to publish information to help
recognize elements of the form rg/z"
> But not of the form (rg + x)/z"
> Also not of the form rg/z" for k' > k

o First idea: publish p,; = z"/g

o [pze - 79/2"]q =1, with |[r] < q
° But [p,; - (rg + x)/2"]q = [r +x/gl,,
and x/g entails wraparound mod ¢
So typically |[r +x/gl,| = q

Zero-Test Parameter (2)

e Main problem is that z*/g enables also
zero-testing at levels > k

Sk 2
o} E.g-’ |:sz 1 fO ()
q

» To counter this,set p,; = h - z"/g

> With |h| = Vg

> Now squaring p,. already yields wraparound
» Zero-testing procedure:

° Check if |[p - clq| < q3/4

=r-a, |[r-al<Kgq

Correctness of Zero-Testing

o If c = rg/z" encodes zero at level k then
hz%/g-rg/z* = hr (mod q)

> We know that |rg| < q1/8, since all valid
encodings have small numerators

> Hence also |r| < g1/8+€
This assumes g~ 1 is small in the field of fractions

> Since |h| < q1/2%€ then |hr| < g3/4
o [nz¥/g -rg/z*], = hr and |hr| < ¢3/*
so the zero-test pass

Correctness of Zero-Testing (2)

e The converse is a bit more complicated:
» Let g, h be such that the two ideals

JR, hR are co-prime
Lemma: Let e be s.t. |eh| < g/2 and let
w = |eh/g]l,. If wis small enough,
lwg| < q/2,then e € gR

° j.e.,,e = gr for some r

Proof: wg = eh over R (since both < q/2)
and since h, g co-prime then g|e.

Correctness of Zero-Testing (3)

Lemma: Let e be s.t. |eh| < g/2 and let
w = |eh/g],. If wis small enough,

lwg| < q/2,then e € gR

Corollary: if e/z% is a valid level-k encoding
(=2 |eh| < gq/2) and it passes zero-test
(2w is small), so it is an encoding of zero

Security of Zero-Testing

* This Zero-Test procedure provides
functionality, not security

o Easy to come up with an “invalid encoding”
that passes the zero test.

* If we need security, publish many p,;’s
for many different mid-size h’es

> Check |[p,¢ - cly| < q3/* for all of them

> Can prove that whp over the h’es, only valid
zero-encodings pass this test.

What’s Hard

e Some degree-k + 1 functions seem hard to
compute, or even test

Multilinear-DDH (MDDH)

e For k + 1 level-1 encoding of random

elements, c(l) C(li)
* and another level-k encoding C()
e hard to distinguish b = ag * ... a5 (mod g)

from random b

What’s Not Hard

e Other degree-k + 1 functions are easy

Multilinear-DDH’

e For k + 1 level-1 encoding of random
(1) D

elements, ¢, Cay »

* and another IeveI 1 encoding C(l)

» easy to decide if b = ay - ... a; (mod g)

What’s the Difference!

* A"target group” problem includes some
elements encoded at the highest level (k)

> Such problems are seemingly hard in these
encodings

* A“source group” problem includes only
elements encoded at levels < k

° Include things like decision-linear assumption

> These problems are easy, assuming that we
indeed provide the public-key elements f, f1

Why the Difference!

* These encodings are subject to a “weak
discrete-logarithm” attacks. Given:

° Level-i encoding of some a, and
> Level-j encoding of 0 (e.g., fp),withi +j < k
» Can compute “in the clear” a’ € a + gR
° l.e,a’ = a+ gr for somer
» a’ is not small, so you cannot re-encode it
at level 1 and break MDDH or similar

> But if you have g', aj, ..., a;, and b’, you can
check whether b’ = aj - ...- a;, mod g’

Dealing with “Weak DL’ Attacks

» Some applications only rely on “target
group’’ assumptions

> Those are not affected by the attack

* More applications can get by without
providing f,, f1, so attack does not apply

e Or use other MMAPs

o [CTL 3] seemingly not susceptible to weak-DL
o Can perhaps “immunize” [GGH’| 3] against it

Using GGH-encoded matrices and their eigenvalues

Computation Problems

* The source/target distinction is about
decision problems

 Computation problems have their own issues

* Roughly speaking, anything that requires
division is hard
() cY)

° But division in the ring R is easy:from ¢, *, ¢,

we can compute d = [()/CU)

° d is unlikely to be a valid encoding, can perhaps
be discarded using the “secure zero-test”

~ APPLICATIONS OF

MMAPS

Application |
(k + 1)-partite key exchange

* Public parameters include fy, f1, D¢
* P; draws small m;, r;, publishes the level-1
encoding u; = C,%l) =T1ifo + Mify
* P; computes level-k encoding of product
s; = my - [1j=i uj
 All parties have level-k encodings of the
same thing

° Indistinguishable from encoding of a random
element, under MDDH

* How to get a shared secret key out of it!

Extracting Canonical Representation

o All of s, ..., S, encode the same thing
-> [pztsl- — pztsj]q = [pzt(sl- — S]-)]q is small Vi, j
=>Roughly use MSBs of [p,; - s;]4 as a shared key
 Public params also include

> Seed o of strong randomness extractor
> Random element 0 € R,

e Shared key computed as
K; = ext(,(MSB[6 + Dt Si]q)
> Whp over 0, all K;’s are equal
° Indistinguishable to observer from random bits

Application ll:Witness Encryption

e “Encryption without any key”
> Relative to an arbitrary riddle

> Defined here relative to exact-cover (XC)
Use NP-hardness to get any NP statement

* Message encrypted wrt to XC instance

> Encryptor need not know a solution, or even
if a solution exists

* Anyone with a solution can decrypt
e Semantic-security if no solution exists

Recall Exact Cover

* Instance: A universe [n] and a collection
of subsets S; c [n],i=1,...,m

* A solution: sub-collection of the S;’s that
forms a partition of [n],i.e,,
° Subsets are pairwise disjoint, and

> Their union is the entire [n].

The [GGSW I 3] Construction

* On an XC instance (1,54, ..., S;,) and
a message M

> Use n-linear maps
> Choose n random elements a4, ..., a,
> For every subset S; = {j, ..., j;}, publish a

level-t encoding C,g? of A; =a; - .. q,

> Use a level-n encoding cl(,n) of U =aq-..-

to encrypt, by publishing the ciphertext
C = ext, (MSB [6 + Dyt cl(,n)]) O M
q

The [GGSW] Construction (2)
o IfS; , ..., 5;, is asolution, then multiplying
the corresponding cf(l?)’s we get a level-n

encoding of U, then we can decrypt

* Every non-solvable instance defines a
computational problem

> Distinguish a level-n encoding of U from a
level-n encoding of random

* We assume all these problems to be hard
o |s this a reasonable assumption to make!?

Application lll: Full-Domain Hash

» Consider the following hash function,
H : {0,1}¢ - level-f-encodings:
> Public version of Naor-Reingold PRF

cletaygayq, G001, -, 0p0,0pq be
random elements, and publish their level-1

encoding ¢ = {C()ii=1,..,¢ b= 0,1},
H:(X) = c & M . X cM

aZXZ an{

* What can you do with it?

BLS-type Signatures [HWVSI13]

e Use k = £ + 1, publish also c(l)

° agq is the secret key
o0 =Sig(X) =ay X Hz(X)
> Level-¢ encoding of an (£ + 1)-product
* Verify using zero-test:

(0B f) =2 = (e’ H:0)

» Can be aggregated, made identity-based

“Programmable” Hash Functions
[FHPS 3]

 For any fixed “basis” b4, ..., by, b* (encoded
at level 1), can generate a random ¢ as
above with a trapdoor td s.t.:

> Using td we can find for any X a “representation
of Hz(X) in this basis”
He(X) = ax X (by X -+~ X by) + By X b*
« at level zero, B at level k — 1
> Roughly, for all but a random 1/poly fraction of
the X’es, we have ay = 0
 This is useful for “partition-type” proofs of
security

Obfuscation [GGHRSW | 3]

» Goal: take an arbitrary circuit and “encrypt
it”, so that:
o Can still evaluate the result on any input
> But “not much else”

e Formulating “not much else” is hard

> [BGIRSVYOI] show that some natural
formulations cannot be met

> Also defined the weaker notion of
“indistinguishability Obfuscation” (iO):

o If €y, C, compute the same function, then
OBF(C,) = OBF(C,)

iO for NC1

* Begin with a corollary of Barrington’s
theorem, we can recognize L € NC? via
matrix multiplication:
> C} represented by a sequence of matrices of

length exp(depth(C,))
° Input x determines a sub-sequence
o x € L iff their product is the identity

Obfuscating C}

* Randomize the matrices for C;

> How to randomize is the hard part, need to
counter several attacks

* Provide level-1 encoding of matrices
* To evaluate on x

> Choose a subset and multiply the encoding

> Use zero-testing to check for identity

Security

* Mostly heuristic, but supported by
generic-group arguments

 Every pair of circuits C;, C,, defines a
decision problem
> We assume that they are all hard

* These are all source-group assumptions

o Since the matrices are encoded at level 1

> But we are not giving f,, f1, so the weak-DL
attack does not apply

Summary

e Can approximate cryptographic MMAPs
> Using SWHE with “handicapped secret key”
> Known constructions from NTRU, “integer HE”

o Can we do the same thing from other schemes!?
e Enabling many new applications
> But hardness assumptions are strong, “ugly”

° In desperate need of a coherent theory

* Practical performance lacking
> Worse than the [Gen09] HE scheme

