Introduction to Cryptographic Multilinear Maps

Sanjam Garg, Craig Gentry, <u>Shai Halevi</u> IBM T.J. Watson Research Center

Dec 2013 Visions of Cryptography, Weizmann Inst.

Multilinear Maps (MMAPs)

- A technical tool
 - Think "trapdoor-permutations" or "smoothprojective-hashing", or "randomized-encoding"
 - More a technique than a single primitive
 - Several different variants, all share the same core properties but differ in details
- Extension of bilinear maps [J00,SOK00,BF01]
 - Bilinear maps are extensions of DL-based crypto
 - Took the crypto world by storm in 2000, used in dozens of applications, hundreds of papers
 - Applications from IBE to NIZK and more

DL/DDH and Bilinear Maps

- Why is DDH such a "gold mine"?
 - You can take values a_i and "hide them" in g^{a_i}
 - Some tasks are still easy in this representation
 - Can compute any linear/affine function of the a_i 's, and check if $a_i = 0$
 - Other tasks are seemingly hard
 - E.g., computing/checking quadratic functions
- Bilinear maps are similar: we can compute quadratics, while cubics seem hard
 - Turns out to be even more useful

Why Stop at Two?

- Can we find groups that would let us compute cubics but not 4th powers?
 - Or in general, upto degree k but no more?
- Cryptographic multilinear maps (MMAPs)
 - Even more useful than bilinear
- [Boneh-Silverberg'03] explored some applications of MMAPs
 - Also argued that they are unlikely to be constructed similarly to bilinear maps

The [GGH'I3] Approach

- An "approximate" cryptographic MMAPs
 - \circ Degree-k functions, zero-test are easy
 - Some degree-(k + 1) functions seem hard
 - Enabling many new applications
- Built using "FHE techniques"
 - From a variant of the NTRU HE scheme
- Another construction in [CLT'I3]
 - Using a variant of "HE over integers" instead
 - All degree-(k + 1) functions seem hard

This Talk

- An overview of [GGH'I3]
 - Some details
 - Which degree-(k + 1) functions are easy/hard
 - Source- vs. target-group assumptions
- Examples of using it:
 - (k + 1)-partite key exchange [J00,BS03]
 - Witness encryption [GGSW'I3]
 - Full domain hash [FHPS'13, HSW'13]
 - Obfuscation (just a hint)

THE [GGH'I3] CONSTRUCTION

"Somewhat Homomorphic" Encryption (SWHE) vs. MMAPs <u>SWHE</u> <u>MMAPs</u>

- Encrypting $c_a = E(a)$
- Computing low-deg polynomials of the c_a's is easy
- ? Fuzzy threshold for easy vs. hard?
- X Cannot test anything
 - But if you have skey you can recover a itself

- "Encoding" $e_a = g^a$
- Computing low-deg polynomials of the e_a's is easy
- Sharp threshold for easy vs. hard
- Can test for zero

Main Ingredient: Testing for Zero

- To be useful, we must be able to test if two degree-k expressions are equal
 - Using homomorphism, that's the same as testing if a degree-k expression equals zero
- Our approach: augment a SWHE scheme with a "handicapped" secret key
 - Can test if a ciphertext decrypts to zero, but cannot decrypt arbitrary cipehrtexts
 - Assuming that the plaintext-space is large
 - Called a "zero-test parameter"

A Few Words About Levels

- A "level-k" ciphertext encrypts a degree-k expression
 - Fresh cipehrtexts, $c_a = \text{Enc}(a)$, are at level 1
 - $Level(c \boxtimes c') = Level(c) + Level(c')$
 - $Level(c \boxplus c') = \max\{Level(c), Level(c')\}$
- Contemporary SWHE schemes are "naturally leveled"
 - Often a ciphertext in these schemes would be tagged with its level

A Few Words About Levels (2)

- A zero-test parameter that works for all levels, would give a "black-box field"
 - Could be useful, but it's not MMAPs
 - Also we don't know how to get one
- Our zero-test parameter only works for ciphertexts at one particular level k
 - The zero-test level is a parameter, equal to the multi-linearity degree that we want to implement

Our Goal ("approximate MMAPs")

k-Graded Encoding Scheme

 a_i 's from some large finite field/ring

- <u>KeyGen(k)</u>: Generating public parameters
- <u>Encode</u>: level-1 encoding of plaintext a_i 's
 - Plaintext a_i 's themselves are considered "level-0"
 - Encoding can be randomized
- <u>Arithmetic</u>: addition & multiplication
 - $Level(c \boxtimes c') = Level(c) + Level(c')$
 - $Level(c \boxplus c') = \max\{Level(c), Level(c')\}$
- <u>Zero-test</u>: does *c* encode 0?
 - Only works for level-k encoding

Some Variations

- Can extract "random canonical representation" of a from any level-k encoding of a
- Can only encode random a_i 's, not specific ones
- KeyGen outputs a matching secret key
 - Secret key may be needed for encoding
- Encoding can be re-randomizable
 - Given any level-*i* encoding of *a*, output a random level-*i* encoding of the same *a*
- More complicated level structure than just 0,1,2,...
 - E.g., levels are vectors, with partial ordering
 - Yields an extension of "asymmetric maps"

Overview of [GGH'I3]

- Start from an NTRU-like SWHE scheme
 - Semantic-security under some "reasonable assumptions"
- Add zero-test parameter
 - Some things that were hard now become easy
 - Other things are still seemingly hard
 - But hardness assumptions are stronger, uglier
 - Separating hard from easy is challenging

Starting From NTRU-like SWHE

- All ops are in some polynomial rings
 - $R = Z[X]/F(X), R_q = R/qR$
- Secret key is $g, z \in R_q$ $\ln \text{NTRU } g = 3$
 - g is short $(|g| \ll q)$, z is random in R_q
 - Plaintext elements are from $R_g = R/gR$
- An encryption of a is $c_a = [e_a/z]_q$
 - $|e_a| \ll q$ and $e_a = a \pmod{g}$
- To decrypt set $a \leftarrow [c_a \cdot z]_q \mod g$

Homomorphic NTRU

• Level-*i* encryption of *a* is $c_a^{(i)} = [e_a/z^i]_a$ • $|e_a| \ll q$ and $e_a = a \pmod{q}$ • To decrypt set $a \leftarrow [c_a \cdot z^i]_a \mod g$ • Can add, multiply ciphertexts in R_a $\circ \left[c_{a}^{(i)} + c_{b}^{(i)} \right]_{a} = \left[(e_{a} + e_{b})/z^{i} \right]_{a} = c_{a+b}^{(i)}$ • Because $|e_a + e_b| \ll q$ and $e_a + e_b = a + b \pmod{g}$ $\circ \left[c_a^{(i)} \cdot c_b^{(j)} \right]_a = \left[e_a e_b / z^{i+j} \right]_q = c_{ab}^{(i+j)}$ Because $|e_a e_b| \ll q$ and $e_a e_b = ab \pmod{g}$ • as long as numerator remains $\ll q$

The Public Key

- Let $f_0 = c_0^{(1)} = \frac{\alpha g}{z}$, $f_1 = c_1^{(1)} = \frac{\beta g + 1}{z}$ • $|\alpha g|, |\beta g + 1| \ll q$
- To encrypt a small m, choose small r, set $c_m^{(1)} = rf_0 + mf_1 = \frac{(r\alpha + m\beta)g + m}{z}$
- If m is Gaussian with suitable parameter then $|m| \ll q$ and m is ~uniform mod g
 - So we can encrypt random R_g elements
 - But not any pre-set element

Zero-Test Parameter

- Need to publish information to help recognize elements of the form rg/z^k
 - But not of the form $(rg + x)/z^k$
 - Also not of the form $rg/z^{k'}$ for k' > k
- First idea: publish $p_{zt} = z^k/g$
 - $[p_{zt} \cdot rg/z^k]_q = r$, with $|r| \ll q$
 - But $[p_{zt} \cdot (rg + x)/z^k]_q = [r + x/g]_q$, and x/g entails wraparound mod q
 - So typically $|[r + x/g]_q| \approx q$

Zero-Test Parameter (2)

• Main problem is that z^k/g enables also zero-testing at levels > k

• E.g.,
$$\left[\frac{rg}{z^{2k-1}} \cdot f_0 \cdot \left(\frac{z^k}{g}\right)^2\right]_q = r \cdot \alpha, \ |r \cdot \alpha| \ll q$$

- To counter this, set $p_{zt} = h \cdot z^k / g$ • With $|h| \approx \sqrt{q}$
 - \circ Now squaring $p_{\rm zt}$ already yields wraparound
- Zero-testing procedure:

 \circ Check if $|[p_{zt} \cdot c]_q| < q^{3/4}$

Correctness of Zero-Testing

- If $c = rg/z^k$ encodes zero at level k then $hz^k/g \cdot rg/z^k = hr \pmod{q}$
 - \circ We know that $|rg| < q^{1/8},$ since all valid encodings have small numerators
 - Hence also $|r| < q^{1/8 + \epsilon}$
 - This assumes g^{-1} is small in the field of fractions
 - \circ Since $|h| < q^{1/2 + \epsilon}$ then $|hr| < q^{3/4}$
- $[hz^k/g \cdot rg/z^k]_q = hr$ and $|hr| < q^{3/4}$ so the zero-test pass

Correctness of Zero-Testing (2)

- The converse is a bit more complicated:
- Let g, h be such that the two ideals gR, hR are co-prime

Lemma: Let e be s.t. |eh| < q/2 and let $w = [eh/g]_q$. If w is small enough, |wg| < q/2, then $e \in gR$

 \circ i.e., e = gr for some r

<u>Proof</u>: wg = eh over R (since both < q/2) and since h, g co-prime then g|e.

Correctness of Zero-Testing (3)

Lemma: Let e be s.t. |eh| < q/2 and let $w = [eh/g]_q$. If w is small enough, |wg| < q/2, then $e \in gR$

<u>Corollary</u>: if e/z^k is a valid level-k encoding $(\rightarrow |eh| < q/2)$ and it passes zero-test $(\rightarrow w$ is small), so it is an encoding of zero

Security of Zero-Testing

- This Zero-Test procedure provides functionality, not security
 - Easy to come up with an "invalid encoding" that passes the zero test.
- If we need security, publish many p_{zt} 's for many different mid-size h'es

 \circ Check $|[p_{zt}\cdot c]_q| < q^{3/4}$ for all of them

 Can prove that whp over the h'es, only valid zero-encodings pass this test.

What's Hard

Some degree-k + 1 functions seem hard to compute, or even test

<u>Multilinear-DDH (MDDH)</u>

- For k + 1 level-1 encoding of random elements, $c_{a_0}^{(1)}, \ldots, c_{a_k}^{(1)}$,
- and another level-k encoding $c_b^{(k)}$,
- hard to distinguish $b = a_0 \cdot ... \cdot a_k \pmod{g}$ from random b

What's Not Hard

• Other degree-k + 1 functions are easy

<u>Multilinear-DDH'</u>

- For k + 1 level-1 encoding of random elements, $c_{a_0}^{(1)}, \dots, c_{a_k}^{(1)}$,
- and another <u>level-1</u> encoding $c_b^{(1)}$,
- easy to decide if $b = a_0 \cdot ... \cdot a_k \pmod{g}$

What's the Difference?

- A "target group" problem includes some elements encoded at the highest level (k)
 - Such problems are seemingly hard in these encodings
- A "source group" problem includes only elements encoded at levels $\leq k$
 - Include things like decision-linear assumption
 - These problems are easy, assuming that we indeed provide the public-key elements f_0, f_1

Why the Difference?

- These encodings are subject to a "weak discrete-logarithm" attacks. Given:
 - Level-i encoding of some a, and
 - Level-j encoding of 0 (e.g., f_0), with $i + j \le k$
- Can compute "in the clear" a' ∈ a + gR
 I.e., a' = a + gr for some r
- a' is not small, so you cannot re-encode it at level 1 and break MDDH or similar
 - But if you have $g', a'_0, ..., a'_k$ and b', you can check whether $b' = a'_0 \cdot ... \cdot a'_k \mod g'$

Dealing with "Weak DL" Attacks

- Some applications only rely on "target group" assumptions
 - Those are not affected by the attack
- More applications can get by without providing f_0, f_1 , so attack does not apply
- Or use other MMAPs
 - [CTL'I3] seemingly not susceptible to weak-DL
 - Can perhaps "immunize" [GGH'I3] against it
 - Using GGH-encoded matrices and their eigenvalues

Computation Problems

- The source/target distinction is about decision problems
- Computation problems have their own issues
- Roughly speaking, anything that requires division is hard
 - But division in the ring R_q is easy: from $c_{a_1}^{(i)}, c_{a_2}^{(j)}$ we can compute $d = \left[c_{a_1}^{(i)}/c_{a_2}^{(j)}\right]_q$
 - d is unlikely to be a valid encoding, can perhaps be discarded using the "secure zero-test"

[°] APPLICATIONS OF MMAPS

Application I: (k + 1)-partite key exchange

- Public parameters include f_0, f_1, p_{zt}
- P_i draws small m_i, r_i , publishes the level-1 encoding $u_i = c_{m_i}^{(1)} = r_i f_0 + m_i f_1$
- P_i computes level-k encoding of product $s_i = m_i \cdot \prod_{j \neq i} u_j$
- All parties have level-k encodings of the same thing
 - Indistinguishable from encoding of a random element, under MDDH
- How to get a shared secret key out of it?

Extracting Canonical Representation

- All of s₀, ..., s_k encode the same thing
 → [p_{zt}s_i p_{zt}s_j]_q = [p_{zt}(s_i s_j)]_q is small ∀i, j
 → Roughly use MSBs of [p_{zt} · s_i]_q as a shared key
- Public params also include
 - $\circ\,$ Seed $\sigma\,$ of strong randomness extractor
 - Random element $\delta \in \mathbf{R}_q$
- Shared key computed as $K_i = ext_{\sigma} (MSB[\delta + p_{zt} \cdot s_i]_q)$
 - Whp over δ , all K_i 's are equal
 - Indistinguishable to observer from random bits

Application II: Witness Encryption

- "Encryption without any key"
 - Relative to an arbitrary riddle
 - Defined here relative to exact-cover (XC)
 - Use NP-hardness to get any NP statement
- Message encrypted wrt to XC instance
 - Encryptor need not know a solution, or even if a solution exists
- Anyone with a solution can decrypt
- Semantic-security if no solution exists

Recall Exact Cover

- Instance: A universe [n] and a collection of subsets $S_i \subset [n], i = 1, ..., m$
- A solution: sub-collection of the S_i 's that forms a partition of [n], i.e.,
 - Subsets are pairwise disjoint, and
 - Their union is the entire [n].

The [GGSWI3] Construction

- On an XC instance (n, S_1, \dots, S_m) and a message M
 - Use *n*-linear maps
 - Choose n random elements $a_1, ..., a_n$
 - For every subset $S_i = \{j_1, ..., j_t\}$, publish a level-*t* encoding $c_{A_i}^{(t)}$ of $A_i = a_{j_1} \cdot ... \cdot a_{j_t}$
 - Use a level-*n* encoding $c_U^{(n)}$ of $U = a_1 \cdot ... \cdot a_n$ to encrypt, by publishing the ciphertext $C = ext_{\sigma} \left(MSB \left[\delta + p_{zt} \cdot c_U^{(n)} \right]_q \right) \bigoplus M$

The [GGSW] Construction (2)

- If S_{i_1}, \ldots, S_{i_k} is a solution, then multiplying the corresponding $c_{A_i}^{(t_i)}$'s we get a level-*n* encoding of *U*, then we can decrypt
- Every non-solvable instance defines a computational problem
 - Distinguish a level-n encoding of U from a level-n encoding of random
- We assume all these problems to be hard
 - Is this a reasonable assumption to make?

Application III: Full-Domain Hash

- Consider the following hash function, $H : \{0,1\}^{\ell} \rightarrow \text{level-}\ell\text{-encodings}$:
 - Public version of Naor-Reingold PRF
 - Let $a_{1,0,}a_{1,1}$, $a_{2,0,}a_{2,1}$, ..., $a_{\ell,0}$, $a_{\ell,1}$ be random elements, and publish their level-1 encoding $\vec{c} = \{c_{a_{i,b}}^{(1)}: i = 1, ..., \ell, b = 0, 1\},$ $H_{\vec{c}}(X) = c_{a_{1,X_1}}^{(1)} \boxtimes c_{a_{2,X_2}}^{(1)} ... \boxtimes c_{a_{\ell,X_{\ell}}}^{(1)}$
- What can you do with it?

BLS-type Signatures [HWSI3]

• Use $k = \ell + 1$, publish also $c_{a_o}^{(1)}$

 $\circ a_0$ is the secret key

- $\sigma = Sig(X) = a_0 \times H_{\vec{c}}(X)$
 - \circ Level- ℓ encoding of an $(\ell+1)\text{-}\mathsf{product}$
- Verify using zero-test: $(\sigma \boxtimes f_1) = ? = \left(c_{a_o}^{(1)} \boxtimes H_{\vec{c}}(X)\right)$
- Can be aggregated, made identity-based

"Programmable" Hash Functions [FHPSI3]

- For any **fixed** "basis" $b_1, ..., b_k, b^*$ (encoded at level 1), can generate a **random** \vec{c} as above with a trapdoor td s.t.:
 - Using td we can find for any X a "representation of $H_{\vec{c}}(X)$ in this basis"
 - $H_{\vec{c}}(X) = \alpha_X \boxtimes (b_1 \boxtimes \cdots \boxtimes b_k) + B_X \boxtimes b^*$
 - α at level zero, B at level k-1
 - Roughly, for all but a random 1/poly fraction of the X'es, we have $\alpha_X = 0$
- This is useful for "partition-type" proofs of security

Obfuscation [GGHRSW13]

- Goal: take an arbitrary circuit and "encrypt it", so that:
 - Can still evaluate the result on any input
 - But "not much else"
- Formulating "not much else" is hard
 - [BGIRSVY01] show that some natural formulations cannot be met
 - Also defined the weaker notion of "indistinguishability Obfuscation" (iO):
 - If C_1, C_2 compute the same function, then $OBF(C_1) \approx OBF(C_2)$

iO for NC¹

- Begin with a corollary of Barrington's theorem, we can recognize $L \in NC^1$ via matrix multiplication:
 - C_L represented by a sequence of matrices of length $\exp(depth(C_L))$
 - \circ Input x determines a sub-sequence
 - $x \in L$ iff their product is the identity

Obfuscating C_L

- Randomize the matrices for C_L
 - How to randomize is the hard part, need to counter several attacks
- Provide level-1 encoding of matrices
- To evaluate on *x*
 - Choose a subset and multiply the encoding
 - Use zero-testing to check for identity

Security

- Mostly heuristic, but supported by generic-group arguments
- Every pair of circuits C_1, C_2 , defines a decision problem
 - We assume that they are all hard
- These are all source-group assumptions
 - $^{\rm o}$ Since the matrices are encoded at level 1
 - But we are not giving f_0, f_1 , so the weak-DL attack does not apply

Summary

- Can approximate cryptographic MMAPs
 - Using SWHE with "handicapped secret key"
 - Known constructions from NTRU, "integer HE"
 - Can we do the same thing from other schemes?
- Enabling many new applications
 - But hardness assumptions are strong, "ugly"
 - In desperate need of a coherent theory
- Practical performance lacking
 Worse than the [Gen09] HE scheme