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Multilinear Maps (MMAPs) 

 A technical tool 

◦ Think “trapdoor-permutations” or “smooth-
projective-hashing”, or “randomized-encoding” 

◦ More a technique than a single primitive 

 Several different variants, all share the same core 
properties but differ in details 

 Extension of bilinear maps [J00,SOK00,BF01] 

◦ Bilinear maps are extensions of DL-based crypto 

◦ Took the crypto world by storm in 2000, used in 
dozens of applications, hundreds of papers 

◦ Applications from IBE to NIZK and more 
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DL/DDH and Bilinear Maps 

 Why is DDH such a “gold mine”? 

◦ You can take values 𝑎𝑖 and “hide them” in 𝑔𝑎𝑖 

◦ Some tasks are still easy in this representation 

 Can compute any linear/affine function of the 𝑎𝑖 ’s, 
and check if 𝑎𝑖 = 0 

◦ Other tasks are seemingly hard 

 E.g., computing/checking quadratic functions 

 Bilinear maps are similar: we can compute 
quadratics, while cubics seem hard 

 Turns out to be even more useful 
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Why Stop at Two? 

 Can we find groups that would let us 

compute cubics but not 4th powers? 

◦ Or in general, upto degree 𝑘 but no more? 

 Cryptographic multilinear maps (MMAPs) 

◦ Even more useful than bilinear 

 [Boneh-Silverberg’03] explored some 

applications of MMAPs 

◦ Also argued that they are unlikely to be 

constructed similarly to bilinear maps 
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The [GGH’13] Approach 

 An “approximate” cryptographic MMAPs 

◦ Degree-𝑘 functions, zero-test are easy 

◦ Some degree-(𝑘 + 1) functions seem hard 

◦ Enabling many new applications 

 Built using “FHE techniques” 

◦ From a variant of the NTRU HE scheme 

 Another construction in [CLT’13] 

◦ Using a variant of “HE over integers” instead 

◦ All degree-(𝑘 + 1) functions seem hard 

Dec 2013 Visions of Cryptography, Weizmann Inst. 5 



This Talk 

 An overview of [GGH’13] 

◦ Some details 

◦ Which degree-(𝑘 + 1) functions are easy/hard 

 Source- vs. target-group assumptions 

 Examples of using it: 

◦ (𝑘 + 1)-partite key exchange [J00,BS03] 

◦ Witness encryption [GGSW’13] 

◦ Full domain hash [FHPS’13, HSW’13] 

◦ Obfuscation (just a hint) 
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THE [GGH’13] 
CONSTRUCTION 
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“Somewhat Homomorphic” 

Encryption (SWHE) vs. MMAPs 

MMAPs 

• “Encoding” 𝑒𝑎 = 𝑔𝑎 

Computing low-deg 

polynomials of the 𝑒𝑎’s 

is easy 

 Sharp threshold for 

easy vs. hard 

Can test for zero 

SWHE 

• Encrypting c𝑎 = E(𝑎) 

Computing low-deg 

polynomials of the 𝑐𝑎’s 

is easy 

? Fuzzy threshold for 

easy vs. hard? 

Cannot test anything 

• But if you have skey you 

can recover 𝑎 itself 
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Main Ingredient: Testing for Zero 

 To be useful, we must be able to test if 
two degree-𝑘 expressions are equal 

◦ Using homomorphism, that’s the same as 
testing if a degree-𝑘 expression equals zero 

 Our approach: augment a SWHE scheme 
with a “handicapped” secret key 

◦ Can test if a ciphertext decrypts to zero, but 
cannot decrypt arbitrary cipehrtexts 

 Assuming that the plaintext-space is large 

◦ Called a “zero-test parameter” 

Dec 2013 Visions of Cryptography, Weizmann Inst. 9 



A Few Words About Levels 

 A “level-𝑘” ciphertext encrypts a 

degree-𝑘 expression 

◦ Fresh cipehrtexts, 𝑐𝑎=Enc(𝑎), are at level 1 

◦ 𝐿𝑒𝑣𝑒𝑙 𝑐 ⊠ 𝑐′ = 𝐿𝑒𝑣𝑒𝑙 𝑐 + 𝐿𝑒𝑣𝑒𝑙 𝑐′  

◦ 𝐿𝑒𝑣𝑒𝑙 𝑐 ⊞ 𝑐′ = max{𝐿𝑒𝑣𝑒𝑙 𝑐 , 𝐿𝑒𝑣𝑒𝑙(𝑐′)}  

 Contemporary SWHE schemes are 

“naturally leveled” 

◦ Often a ciphertext in these schemes would be 

tagged with its level 
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A Few Words About Levels (2) 

 A zero-test parameter that works for all 

levels, would give a “black-box field” 

◦ Could be useful, but it’s not MMAPs 

◦ Also we don’t know how to get one 

 Our zero-test parameter only works for 

ciphertexts at one particular level 𝑘 

◦ The zero-test level is a parameter, equal to 

the multi-linearity degree that we want to 

implement 
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 𝑎𝑖‘s from some 

large finite field/ring 

Our Goal (“approximate MMAPs”) 

𝒌-Graded Encoding Scheme 

 KeyGen(𝑘): Generating public parameters 

 Encode: level-1 encoding of plaintext 𝑎𝑖 ’s 
◦ Plaintext 𝑎𝑖’s themselves are considered “level-0” 

◦ Encoding can be randomized 

 Arithmetic: addition & multiplication 

◦ 𝐿𝑒𝑣𝑒𝑙 𝑐 ⊠ 𝑐′ = 𝐿𝑒𝑣𝑒𝑙 𝑐 + 𝐿𝑒𝑣𝑒𝑙 𝑐′  

◦ 𝐿𝑒𝑣𝑒𝑙 𝑐 ⊞ 𝑐′ = max{𝐿𝑒𝑣𝑒𝑙 𝑐 , 𝐿𝑒𝑣𝑒𝑙(𝑐′)}  

 Zero-test:  does 𝑐 encode 0?  

◦ Only works for level-𝑘 encoding 
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Some Variations 

 Can extract “random canonical representation” 
of 𝑎 from any level-𝑘 encoding of 𝑎 

 Can only encode random 𝑎𝑖’s, not specific ones 

 KeyGen outputs a matching secret key 

◦ Secret key may be needed for encoding 

 Encoding can be re-randomizable 

◦ Given any level-𝑖 encoding of 𝑎, output a random level-𝑖 
encoding of the same 𝑎 

 More complicated level structure than just 0,1,2, … 

◦ E.g., levels are vectors, with partial ordering 

◦ Yields an extension of  “asymmetric maps” 
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Overview of [GGH’13] 

 Start from an NTRU-like SWHE scheme 

◦ Semantic-security under some “reasonable 

assumptions” 

 Add zero-test parameter 

◦ Some things that were hard now become easy 

◦ Other things are still seemingly hard 

 But hardness assumptions are stronger, uglier 

◦ Separating hard from easy is challenging 
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Starting From NTRU-like SWHE 

 All ops are in some polynomial rings 

◦ 𝑅 = 𝑍[𝑋]/𝐹(𝑋),  𝑅𝑞 = 𝑅/𝑞𝑅 

 Secret key is 𝑔, 𝑧 ∈ 𝑅𝑞 

◦ 𝑔 is short  (|𝑔| ≪ 𝑞),  𝑧 is random in 𝑅𝑞 

◦ Plaintext elements are from 𝑅𝑔 = 𝑅/𝑔𝑅 

 An encryption of 𝑎 is 𝑐𝑎 = 𝑒𝑎/𝑧 𝑞 

◦ |𝑒𝑎| ≪ 𝑞 and 𝑒𝑎 = 𝑎 (𝑚𝑜𝑑 𝑔)  

 To decrypt set 𝑎 ← 𝑐𝑎 ⋅ 𝑧 𝑞 𝑚𝑜𝑑 𝑔 

In NTRU 𝑔 = 3 
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Homomorphic NTRU 

 Level-𝑖 encryption of 𝑎 is 𝑐𝑎
(𝑖)

= 𝑒𝑎 𝑧𝑖 
𝑞
 

◦ |𝑒𝑎| ≪ 𝑞 and 𝑒𝑎 = 𝑎(𝑚𝑜𝑑 𝑔) 

 To decrypt set 𝑎 ← 𝑐𝑎 ⋅ 𝑧
𝑖
𝑞
 𝑚𝑜𝑑 𝑔 

 Can add, multiply ciphertexts in 𝑅𝑞 

◦ 𝑐𝑎
𝑖
+ 𝑐𝑏

𝑖

𝑞
= 𝑒𝑎 + 𝑒𝑏 𝑧𝑖 

𝑞
= 𝑐𝑎+𝑏

(𝑖)
 

 Because |𝑒𝑎 + 𝑒𝑏| ≪ 𝑞 and 𝑒𝑎 + 𝑒𝑏 = 𝑎 + 𝑏 (𝑚𝑜𝑑 𝑔) 

◦ 𝑐𝑎
𝑖
⋅ 𝑐𝑏

𝑗

𝑞
= 𝑒𝑎𝑒𝑏 𝑧𝑖+𝑗 

𝑞
= 𝑐𝑎𝑏

(𝑖+𝑗)
 

 Because |𝑒𝑎𝑒𝑏| ≪ 𝑞 and 𝑒𝑎𝑒𝑏 = 𝑎𝑏 (𝑚𝑜𝑑 𝑔) 

 as long as numerator remains ≪ 𝑞 
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The Public Key 

 Let 𝑓0 = 𝑐0
(1)

=
𝛼𝑔

𝑧
, 𝑓1 = 𝑐1

(1)
=

𝛽𝑔+1

𝑧
 

◦ |𝛼𝑔|, |𝛽𝑔 + 1| ≪ 𝑞 

 To encrypt a small 𝑚, choose small 𝑟, set 

𝒄𝒎
(𝟏)

= 𝒓𝒇𝟎 +𝒎𝒇𝟏 =
𝒓𝜶 +𝒎𝜷 𝒈+𝒎

𝒛
 

 If 𝑚 is Gaussian with suitable parameter 
then |𝑚| ≪ 𝑞 and 𝑚 is ~uniform mod 𝑔 

◦ So we can encrypt random 𝑅𝑔 elements 

◦ But not any pre-set element 
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Zero-Test Parameter 

 Need to publish information to help 

recognize elements of the form 𝒓𝒈/𝒛𝒌 

◦ But not of the form (𝒓𝒈 + 𝒙)/𝒛𝒌 

◦ Also not of the form 𝒓𝒈/𝒛𝒌′ for 𝑘′ > 𝑘 

 First idea: publish 𝒑𝐳𝐭 = 𝒛𝒌/𝒈 

◦ 𝑝𝑧𝑡 ⋅ 𝑟𝑔 𝑧𝑘 𝑞  = 𝑟, with |𝑟| ≪ 𝑞 

◦ But 𝑝𝑧𝑡 ⋅ 𝑟𝑔 + 𝑥 𝑧𝑘 𝑞  = 𝑟 + 𝑥 𝑔 𝑞,  

and 𝑥/𝑔 entails wraparound mod 𝑞 

 So typically | 𝑟 + 𝑥 𝑔 𝑞| ≈ 𝑞 
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Zero-Test Parameter (2) 

 Main problem is that 𝑧𝑘/𝑔 enables also 
zero-testing at levels > 𝑘 

◦ E.g.,  
𝑟𝑔

𝑧2𝑘−1
⋅ 𝑓0 ⋅

𝑧𝑘

𝑔

2

𝑞

= 𝑟 ⋅ 𝛼,   |𝑟 ⋅ 𝛼| ≪ 𝑞 

 To counter this, set 𝒑𝐳𝐭 = 𝒉 ⋅ 𝒛𝒌/𝒈 

◦ With |ℎ| ≈ √𝑞 

◦ Now squaring 𝑝zt already yields wraparound 

 Zero-testing procedure: 

◦ Check if | 𝑝𝑧𝑡 ⋅ 𝑐 𝑞| < 𝑞3/4 
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Correctness of Zero-Testing 

 If c = 𝑟𝑔/𝑧𝑘 encodes zero at level 𝑘 then 

ℎ𝑧𝑘 𝑔 ⋅ 𝑟𝑔 𝑧𝑘  = ℎ𝑟 (mod 𝑞) 

◦ We know that |𝑟𝑔| < 𝑞1/8, since all valid 

encodings have small numerators 

◦ Hence also |𝑟| < 𝑞1/8+𝜖 

 This assumes 𝑔−1 is small in the field of fractions 

◦ Since |ℎ| < 𝑞1/2+𝜖 then |ℎ𝑟| < 𝑞3/4 

 ℎ𝑧𝑘 𝑔 ⋅ 𝑟𝑔 𝑧𝑘 𝑞 = ℎ𝑟 and |ℎ𝑟| < 𝑞3/4 

so the zero-test pass 
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Correctness of Zero-Testing (2) 

 The converse is a bit more complicated: 

 Let 𝑔, ℎ be such that the two ideals 

𝑔𝑅, ℎ𝑅 are co-prime 

Lemma: Let 𝑒 be s.t. |𝑒ℎ| < 𝑞/2 and let 

𝑤 = 𝑒ℎ/𝑔 𝑞. If 𝑤 is small enough, 

|𝑤𝑔| < 𝑞/2, then 𝑒 ∈ 𝑔𝑅 

◦ i.e., 𝑒 = 𝑔𝑟 for some 𝑟 

Proof: 𝑤𝑔 = 𝑒ℎ over 𝑅 (since both < 𝑞/2) 

and since ℎ, 𝑔 co-prime then 𝑔|𝑒. 
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Correctness of Zero-Testing (3) 

Lemma: Let 𝑒 be s.t. |𝑒ℎ| < 𝑞/2 and let 

𝑤 = 𝑒ℎ/𝑔 𝑞. If 𝑤 is small enough, 

|𝑤𝑔| < 𝑞/2, then 𝑒 ∈ 𝑔𝑅 

 

Corollary: if 𝑒/𝑧𝑘 is a valid level-𝑘 encoding 

   (|𝑒ℎ| < 𝑞/2) and it passes zero-test 

   (𝑤 is small), so it is an encoding of zero 
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Security of Zero-Testing 

 This Zero-Test procedure provides 

functionality, not security 

◦ Easy to come up with an “invalid encoding” 

that passes the zero test. 

 If we need security, publish many 𝑝𝑧𝑡’s 
for many different mid-size ℎ’es 

◦ Check | 𝑝𝑧𝑡 ⋅ 𝑐 𝑞| < 𝑞3/4 for all of them 

◦ Can prove that whp over the ℎ’es, only valid 

zero-encodings pass this test. 
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What’s Hard 

 Some degree-𝑘 + 1 functions seem hard to 

compute, or even test 

Multilinear-DDH (MDDH) 

 For 𝑘 + 1 level-1 encoding of random 

elements, 𝑐𝑎0
(1)
, … , 𝑐𝑎𝑘

(1)
, 

 and another level-𝑘 encoding 𝑐𝑏
(𝑘)

, 

 hard to distinguish 𝑏 = 𝑎0 ⋅ … ⋅ 𝑎𝑘 𝑚𝑜𝑑 𝑔  

from random 𝑏 
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What’s Not Hard 

 Other degree-𝑘 + 1 functions are easy 

 

Multilinear-DDH’ 

 For 𝑘 + 1 level-1 encoding of random 

elements, 𝑐𝑎0
(1)
, … , 𝑐𝑎𝑘

(1)
, 

 and another level-1 encoding 𝑐𝑏
(1)

, 

 easy to decide if 𝑏 = 𝑎0 ⋅ … ⋅ 𝑎𝑘 (𝑚𝑜𝑑 𝑔) 
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What’s the Difference? 

 A “target group” problem includes some 
elements encoded at the highest level (𝑘) 

◦ Such problems are seemingly hard in these 
encodings 

 

 A “source group” problem includes only 
elements encoded at levels ≤ 𝑘 

◦ Include things like decision-linear assumption 

◦ These problems are easy, assuming that we 
indeed provide the public-key elements 𝑓0, 𝑓1 
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Why the Difference? 

 These encodings are subject to a “weak 
discrete-logarithm” attacks. Given: 

◦ Level-𝑖 encoding of some 𝑎, and  

◦ Level-𝑗 encoding of 0 (e.g., 𝑓0), with 𝑖 + 𝑗 ≤ 𝑘 

 Can compute “in the clear” 𝑎′ ∈ 𝑎 + 𝑔𝑅 

◦ I.e., 𝑎′ = 𝑎 + 𝑔𝑟 for some 𝑟 

 𝑎′ is not small, so you cannot re-encode it 
at level 1 and break MDDH or similar 

◦ But if you have 𝑔′, 𝑎0
′ , … , 𝑎𝑘

′  and 𝑏′, you can 
check whether 𝑏′ = 𝑎0

′ ⋅ … ⋅ 𝑎𝑘
′  mod 𝑔′ 
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Dealing with “Weak DL” Attacks 

 Some applications only rely on “target 

group” assumptions 

◦ Those are not affected by the attack 

 More applications can get by without 

providing 𝑓0, 𝑓1, so attack does not apply 

 Or use other MMAPs 

◦ [CTL’13] seemingly not susceptible to weak-DL 

◦ Can perhaps “immunize” [GGH’13] against it 

 Using GGH-encoded matrices and their eigenvalues 
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Computation Problems 

 The source/target distinction is about 

decision problems 

 Computation problems have their own issues 

 Roughly speaking, anything that requires 

division is hard 

◦ But division in the ring 𝑅𝑞 is easy: from 𝑐𝑎1
(𝑖)
, 𝑐𝑎2

(𝑗)
 

we can compute 𝑑 = 𝑐𝑎1
𝑖

𝑐𝑎2
𝑗

 
𝑞
 

◦ 𝑑 is unlikely to be a valid encoding, can perhaps 

be discarded using the “secure zero-test” 
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APPLICATIONS OF 
MMAPS 
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Application I: 

(𝑘 + 1)-partite key exchange 
 Public parameters include 𝑓0, 𝑓1, 𝑝𝑧𝑡 

 𝑃𝑖 draws small 𝑚𝑖, 𝑟𝑖, publishes the level-1 

encoding 𝑢𝑖 = 𝑐𝑚𝑖

(1)
= 𝑟𝑖𝑓0 +𝑚𝑖𝑓1 

 𝑃𝑖 computes level-𝑘 encoding of product 
𝑠𝑖 = 𝑚𝑖 ⋅ ∏𝑗≠𝑖 𝑢𝑗 

 All parties have level-𝑘 encodings of the 
same thing 

◦ Indistinguishable from encoding of a random 
element, under MDDH 

 How to get a shared secret key out of it? 
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Extracting Canonical Representation 

 All of 𝑠0, … , 𝑠𝑘 encode the same thing 

 𝑝𝑧𝑡𝑠𝑖 − 𝑝𝑧𝑡𝑠𝑗 𝑞
= 𝑝𝑧𝑡 𝑠𝑖 − 𝑠𝑗 𝑞

 is small ∀𝑖, 𝑗 

Roughly use MSBs of 𝑝𝑧𝑡 ⋅ 𝑠𝑖 𝑞 as a shared key 

 Public params also include 

◦ Seed 𝜎 of strong randomness extractor 

◦ Random element 𝛿 ∈ R𝑞 

 Shared key computed as 

𝐾𝑖 = 𝑒𝑥𝑡𝜎 𝑀𝑆𝐵 𝛿 + 𝑝𝑧𝑡 ⋅ 𝑠𝑖 𝑞  

◦ Whp over 𝛿, all 𝐾𝑖’s are equal 

◦ Indistinguishable to observer from random bits 
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Application II: Witness Encryption 

 “Encryption without any key” 

◦ Relative to an arbitrary riddle 

◦ Defined here relative to exact-cover (XC) 

 Use NP-hardness to get any NP statement 

 Message encrypted wrt to XC instance 

◦ Encryptor need not know a solution, or even 

if a solution exists 

 Anyone with a solution can decrypt 

 Semantic-security if no solution exists 
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Recall Exact Cover 

 Instance:  A universe [𝑛] and a collection 

of subsets 𝑆𝑖 ⊂ [𝑛], 𝑖 = 1,… ,𝑚 

 A solution:  sub-collection of the 𝑆𝑖 ’s that 

forms a partition of [𝑛], i.e.,  

◦ Subsets are pairwise disjoint, and 

◦ Their union is the entire [𝑛]. 
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The [GGSW13] Construction 

 On an XC instance (𝑛, 𝑆1, … , 𝑆𝑚) and 
a message 𝑀 

◦ Use 𝑛-linear maps 

◦ Choose 𝑛 random elements 𝑎1, … , 𝑎𝑛 

◦ For every subset 𝑆𝑖 = {𝑗1, … , 𝑗𝑡}, publish a 

level-𝑡 encoding 𝑐𝐴𝑖
(𝑡)

 of 𝐴𝑖 = 𝑎𝑗1 ⋅ … ⋅ 𝑎𝑗𝑡 

◦ Use a level-𝑛 encoding 𝑐𝑈
(𝑛)

 of 𝑈 = 𝑎1 ⋅ … ⋅ 𝑎𝑛 

to encrypt, by publishing the ciphertext 

𝐶 = 𝑒𝑥𝑡𝜎 𝑀𝑆𝐵 𝛿 + 𝑝𝑧𝑡 ⋅ 𝑐𝑈
(𝑛)

𝑞
⊕𝑀 
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The [GGSW] Construction (2) 

 If 𝑆𝑖1 , … , 𝑆𝑖𝑘 is a solution, then multiplying 

the corresponding 𝑐𝐴𝑖
(𝑡𝑖)’s we get a level-𝑛 

encoding of U, then we can decrypt 

 Every non-solvable instance defines a 
computational problem 

◦ Distinguish a level-𝑛 encoding of 𝑈 from a 
level-𝑛 encoding of random 

 We assume all these problems to be hard 

◦ Is this a reasonable assumption to make? 
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Application III: Full-Domain Hash 

 Consider the following hash function, 

𝐻 ∶  0,1 ℓ → level-ℓ-encodings: 

◦ Public version of Naor-Reingold PRF 

◦ Let 𝑎1,0,𝑎1,1, 𝑎2,0,𝑎2,1, … , 𝑎ℓ,0, 𝑎ℓ,1 be 

random elements, and publish their level-1 

encoding 𝒄 = {𝑐𝑎𝑖,𝑏
(1)

: 𝑖 = 1,… , ℓ, 𝑏 = 0,1}, 

𝐻𝑐 𝑋 = 𝑐𝑎1,𝑋1
(1)

⊠ 𝑐𝑎2,𝑋2
1

… ⊠ 𝑐𝑎ℓ,𝑋ℓ
(1)

 

 What can you do with it? 
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BLS-type Signatures [HWS13] 

 Use 𝑘 = ℓ + 1, publish also 𝑐𝑎𝑜 
(1)

 

◦ 𝑎0 is the secret key 

 𝜎 = 𝑆𝑖𝑔 𝑋 = 𝑎0 × 𝐻𝑐 (𝑋) 

◦ Level-ℓ encoding of an (ℓ + 1)-product 

 Verify using zero-test: 

𝜎 ⊠ 𝑓1 =?= 𝑐𝑎𝑜 
1
⊠𝐻𝑐 𝑋  

 Can be aggregated, made identity-based 
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“Programmable” Hash Functions 

[FHPS13] 
 For any fixed “basis” 𝑏1, … , 𝑏𝑘, 𝑏

∗ (encoded 
at level 1), can generate a random 𝑐  as 
above with a trapdoor 𝑡𝑑 s.t.: 

◦ Using 𝑡𝑑 we can find for any 𝑋 a “representation 
of 𝐻𝑐 (𝑋) in this basis” 

 𝐻𝑐 𝑋 = 𝛼𝑋 ⊠ 𝑏1 ⊠⋯⊠ 𝑏𝑘 + 𝐵𝑋 ⊠𝑏∗  

 𝛼 at level zero, 𝐵 at level 𝑘 − 1 

◦ Roughly, for all but a random 1/𝑝𝑜𝑙𝑦 fraction of 
the 𝑋’es, we have 𝛼𝑋 = 0 

 This is useful for “partition-type” proofs of 
security 
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Obfuscation [GGHRSW13] 

 Goal: take an arbitrary circuit and “encrypt 
it”, so that: 

◦ Can still evaluate the result on any input 

◦ But “not much else” 

 Formulating “not much else” is hard 

◦ [BGIRSVY01] show that some natural 
formulations cannot be met 

◦ Also defined the weaker notion of 
“indistinguishability Obfuscation” (iO): 

◦ If 𝐶1, 𝐶2 compute the same function, then 
𝑂𝐵𝐹 𝐶1 ≈ 𝑂𝐵𝐹(𝐶2) 
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iO for 𝑁𝐶1 

 Begin with a corollary of Barrington’s 

theorem, we can recognize L ∈ 𝑁𝐶1 via 

matrix multiplication: 

◦ 𝐶𝐿 represented by a sequence of matrices of 

length exp 𝑑𝑒𝑝𝑡ℎ 𝐶𝐿  

◦ Input 𝑥 determines a sub-sequence 

◦ 𝑥 ∈ 𝐿 iff their product is the identity 
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Obfuscating 𝐶𝐿 

 Randomize the matrices for 𝐶𝐿 

◦ How to randomize is the hard part, need to 

counter several attacks 

 Provide level-1 encoding of matrices 

 To evaluate on 𝑥 

◦ Choose a subset and multiply the encoding 

◦ Use zero-testing to check for identity 
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Security 

 Mostly heuristic, but supported by 

generic-group arguments 

 Every pair of circuits 𝐶1, 𝐶2, defines a 

decision problem 

◦ We assume that they are all hard 

 These are all source-group assumptions 

◦ Since the matrices are encoded at level 1 

◦ But we are not giving 𝑓0, 𝑓1, so the weak-DL 

attack does not apply 
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Summary 

 Can approximate cryptographic MMAPs 

◦ Using SWHE with “handicapped secret key” 

◦ Known constructions from NTRU, “integer HE” 

◦ Can we do the same thing from other schemes? 

 Enabling many new applications 

◦ But hardness assumptions are strong, “ugly” 

◦ In desperate need of a coherent theory 

 Practical performance lacking 

◦ Worse than the [Gen09] HE scheme 
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