
Introduction to

Cryptographic Multilinear Maps

Sanjam Garg, Craig Gentry, Shai Halevi

IBM T.J. Watson Research Center

Dec 2013 Visions of Cryptography, Weizmann Inst. 1

Multilinear Maps (MMAPs)

 A technical tool

◦ Think “trapdoor-permutations” or “smooth-
projective-hashing”, or “randomized-encoding”

◦ More a technique than a single primitive

 Several different variants, all share the same core
properties but differ in details

 Extension of bilinear maps [J00,SOK00,BF01]

◦ Bilinear maps are extensions of DL-based crypto

◦ Took the crypto world by storm in 2000, used in
dozens of applications, hundreds of papers

◦ Applications from IBE to NIZK and more

Dec 2013 Visions of Cryptography, Weizmann Inst. 2

DL/DDH and Bilinear Maps

 Why is DDH such a “gold mine”?

◦ You can take values 𝑎𝑖 and “hide them” in 𝑔𝑎𝑖

◦ Some tasks are still easy in this representation

 Can compute any linear/affine function of the 𝑎𝑖 ’s,
and check if 𝑎𝑖 = 0

◦ Other tasks are seemingly hard

 E.g., computing/checking quadratic functions

 Bilinear maps are similar: we can compute
quadratics, while cubics seem hard

 Turns out to be even more useful

Dec 2013 Visions of Cryptography, Weizmann Inst. 3

Why Stop at Two?

 Can we find groups that would let us

compute cubics but not 4th powers?

◦ Or in general, upto degree 𝑘 but no more?

 Cryptographic multilinear maps (MMAPs)

◦ Even more useful than bilinear

 [Boneh-Silverberg’03] explored some

applications of MMAPs

◦ Also argued that they are unlikely to be

constructed similarly to bilinear maps

Dec 2013 Visions of Cryptography, Weizmann Inst. 4

The [GGH’13] Approach

 An “approximate” cryptographic MMAPs

◦ Degree-𝑘 functions, zero-test are easy

◦ Some degree-(𝑘 + 1) functions seem hard

◦ Enabling many new applications

 Built using “FHE techniques”

◦ From a variant of the NTRU HE scheme

 Another construction in [CLT’13]

◦ Using a variant of “HE over integers” instead

◦ All degree-(𝑘 + 1) functions seem hard

Dec 2013 Visions of Cryptography, Weizmann Inst. 5

This Talk

 An overview of [GGH’13]

◦ Some details

◦ Which degree-(𝑘 + 1) functions are easy/hard

 Source- vs. target-group assumptions

 Examples of using it:

◦ (𝑘 + 1)-partite key exchange [J00,BS03]

◦ Witness encryption [GGSW’13]

◦ Full domain hash [FHPS’13, HSW’13]

◦ Obfuscation (just a hint)

Dec 2013 Visions of Cryptography, Weizmann Inst. 6

THE [GGH’13]
CONSTRUCTION

Dec 2013 Visions of Cryptography, Weizmann Inst. 7

“Somewhat Homomorphic”

Encryption (SWHE) vs. MMAPs

MMAPs

• “Encoding” 𝑒𝑎 = 𝑔𝑎

Computing low-deg

polynomials of the 𝑒𝑎’s

is easy

 Sharp threshold for

easy vs. hard

Can test for zero

SWHE

• Encrypting c𝑎 = E(𝑎)

Computing low-deg

polynomials of the 𝑐𝑎’s

is easy

? Fuzzy threshold for

easy vs. hard?

Cannot test anything

• But if you have skey you

can recover 𝑎 itself

Dec 2013 Visions of Cryptography, Weizmann Inst. 8

Main Ingredient: Testing for Zero

 To be useful, we must be able to test if
two degree-𝑘 expressions are equal

◦ Using homomorphism, that’s the same as
testing if a degree-𝑘 expression equals zero

 Our approach: augment a SWHE scheme
with a “handicapped” secret key

◦ Can test if a ciphertext decrypts to zero, but
cannot decrypt arbitrary cipehrtexts

 Assuming that the plaintext-space is large

◦ Called a “zero-test parameter”

Dec 2013 Visions of Cryptography, Weizmann Inst. 9

A Few Words About Levels

 A “level-𝑘” ciphertext encrypts a

degree-𝑘 expression

◦ Fresh cipehrtexts, 𝑐𝑎=Enc(𝑎), are at level 1

◦ 𝐿𝑒𝑣𝑒𝑙 𝑐 ⊠ 𝑐′ = 𝐿𝑒𝑣𝑒𝑙 𝑐 + 𝐿𝑒𝑣𝑒𝑙 𝑐′

◦ 𝐿𝑒𝑣𝑒𝑙 𝑐 ⊞ 𝑐′ = max{𝐿𝑒𝑣𝑒𝑙 𝑐 , 𝐿𝑒𝑣𝑒𝑙(𝑐′)}

 Contemporary SWHE schemes are

“naturally leveled”

◦ Often a ciphertext in these schemes would be

tagged with its level

Dec 2013 Visions of Cryptography, Weizmann Inst. 10

A Few Words About Levels (2)

 A zero-test parameter that works for all

levels, would give a “black-box field”

◦ Could be useful, but it’s not MMAPs

◦ Also we don’t know how to get one

 Our zero-test parameter only works for

ciphertexts at one particular level 𝑘

◦ The zero-test level is a parameter, equal to

the multi-linearity degree that we want to

implement

Dec 2013 Visions of Cryptography, Weizmann Inst. 11

 𝑎𝑖‘s from some

large finite field/ring

Our Goal (“approximate MMAPs”)

𝒌-Graded Encoding Scheme

 KeyGen(𝑘): Generating public parameters

 Encode: level-1 encoding of plaintext 𝑎𝑖 ’s
◦ Plaintext 𝑎𝑖’s themselves are considered “level-0”

◦ Encoding can be randomized

 Arithmetic: addition & multiplication

◦ 𝐿𝑒𝑣𝑒𝑙 𝑐 ⊠ 𝑐′ = 𝐿𝑒𝑣𝑒𝑙 𝑐 + 𝐿𝑒𝑣𝑒𝑙 𝑐′

◦ 𝐿𝑒𝑣𝑒𝑙 𝑐 ⊞ 𝑐′ = max{𝐿𝑒𝑣𝑒𝑙 𝑐 , 𝐿𝑒𝑣𝑒𝑙(𝑐′)}

 Zero-test: does 𝑐 encode 0?

◦ Only works for level-𝑘 encoding

Dec 2013 Visions of Cryptography, Weizmann Inst. 12

Some Variations

 Can extract “random canonical representation”
of 𝑎 from any level-𝑘 encoding of 𝑎

 Can only encode random 𝑎𝑖’s, not specific ones

 KeyGen outputs a matching secret key

◦ Secret key may be needed for encoding

 Encoding can be re-randomizable

◦ Given any level-𝑖 encoding of 𝑎, output a random level-𝑖
encoding of the same 𝑎

 More complicated level structure than just 0,1,2, …

◦ E.g., levels are vectors, with partial ordering

◦ Yields an extension of “asymmetric maps”

Dec 2013 Visions of Cryptography, Weizmann Inst. 13

Overview of [GGH’13]

 Start from an NTRU-like SWHE scheme

◦ Semantic-security under some “reasonable

assumptions”

 Add zero-test parameter

◦ Some things that were hard now become easy

◦ Other things are still seemingly hard

 But hardness assumptions are stronger, uglier

◦ Separating hard from easy is challenging

Dec 2013 Visions of Cryptography, Weizmann Inst. 14

Starting From NTRU-like SWHE

 All ops are in some polynomial rings

◦ 𝑅 = 𝑍[𝑋]/𝐹(𝑋), 𝑅𝑞 = 𝑅/𝑞𝑅

 Secret key is 𝑔, 𝑧 ∈ 𝑅𝑞

◦ 𝑔 is short (|𝑔| ≪ 𝑞), 𝑧 is random in 𝑅𝑞

◦ Plaintext elements are from 𝑅𝑔 = 𝑅/𝑔𝑅

 An encryption of 𝑎 is 𝑐𝑎 = 𝑒𝑎/𝑧 𝑞

◦ |𝑒𝑎| ≪ 𝑞 and 𝑒𝑎 = 𝑎 (𝑚𝑜𝑑 𝑔)

 To decrypt set 𝑎 ← 𝑐𝑎 ⋅ 𝑧 𝑞 𝑚𝑜𝑑 𝑔

In NTRU 𝑔 = 3

Dec 2013 Visions of Cryptography, Weizmann Inst. 15

Homomorphic NTRU

 Level-𝑖 encryption of 𝑎 is 𝑐𝑎
(𝑖)

= 𝑒𝑎 𝑧𝑖
𝑞

◦ |𝑒𝑎| ≪ 𝑞 and 𝑒𝑎 = 𝑎(𝑚𝑜𝑑 𝑔)

 To decrypt set 𝑎 ← 𝑐𝑎 ⋅ 𝑧
𝑖
𝑞
 𝑚𝑜𝑑 𝑔

 Can add, multiply ciphertexts in 𝑅𝑞

◦ 𝑐𝑎
𝑖
+ 𝑐𝑏

𝑖

𝑞
= 𝑒𝑎 + 𝑒𝑏 𝑧𝑖

𝑞
= 𝑐𝑎+𝑏

(𝑖)

 Because |𝑒𝑎 + 𝑒𝑏| ≪ 𝑞 and 𝑒𝑎 + 𝑒𝑏 = 𝑎 + 𝑏 (𝑚𝑜𝑑 𝑔)

◦ 𝑐𝑎
𝑖
⋅ 𝑐𝑏

𝑗

𝑞
= 𝑒𝑎𝑒𝑏 𝑧𝑖+𝑗

𝑞
= 𝑐𝑎𝑏

(𝑖+𝑗)

 Because |𝑒𝑎𝑒𝑏| ≪ 𝑞 and 𝑒𝑎𝑒𝑏 = 𝑎𝑏 (𝑚𝑜𝑑 𝑔)

 as long as numerator remains ≪ 𝑞

Dec 2013 Visions of Cryptography, Weizmann Inst. 16

The Public Key

 Let 𝑓0 = 𝑐0
(1)

=
𝛼𝑔

𝑧
, 𝑓1 = 𝑐1

(1)
=

𝛽𝑔+1

𝑧

◦ |𝛼𝑔|, |𝛽𝑔 + 1| ≪ 𝑞

 To encrypt a small 𝑚, choose small 𝑟, set

𝒄𝒎
(𝟏)

= 𝒓𝒇𝟎 +𝒎𝒇𝟏 =
𝒓𝜶 +𝒎𝜷 𝒈+𝒎

𝒛

 If 𝑚 is Gaussian with suitable parameter
then |𝑚| ≪ 𝑞 and 𝑚 is ~uniform mod 𝑔

◦ So we can encrypt random 𝑅𝑔 elements

◦ But not any pre-set element

Dec 2013 Visions of Cryptography, Weizmann Inst. 17

Zero-Test Parameter

 Need to publish information to help

recognize elements of the form 𝒓𝒈/𝒛𝒌

◦ But not of the form (𝒓𝒈 + 𝒙)/𝒛𝒌

◦ Also not of the form 𝒓𝒈/𝒛𝒌′ for 𝑘′ > 𝑘

 First idea: publish 𝒑𝐳𝐭 = 𝒛𝒌/𝒈

◦ 𝑝𝑧𝑡 ⋅ 𝑟𝑔 𝑧𝑘 𝑞 = 𝑟, with |𝑟| ≪ 𝑞

◦ But 𝑝𝑧𝑡 ⋅ 𝑟𝑔 + 𝑥 𝑧𝑘 𝑞 = 𝑟 + 𝑥 𝑔 𝑞,

and 𝑥/𝑔 entails wraparound mod 𝑞

 So typically | 𝑟 + 𝑥 𝑔 𝑞| ≈ 𝑞

Dec 2013 Visions of Cryptography, Weizmann Inst. 18

Zero-Test Parameter (2)

 Main problem is that 𝑧𝑘/𝑔 enables also
zero-testing at levels > 𝑘

◦ E.g.,
𝑟𝑔

𝑧2𝑘−1
⋅ 𝑓0 ⋅

𝑧𝑘

𝑔

2

𝑞

= 𝑟 ⋅ 𝛼, |𝑟 ⋅ 𝛼| ≪ 𝑞

 To counter this, set 𝒑𝐳𝐭 = 𝒉 ⋅ 𝒛𝒌/𝒈

◦ With |ℎ| ≈ √𝑞

◦ Now squaring 𝑝zt already yields wraparound

 Zero-testing procedure:

◦ Check if | 𝑝𝑧𝑡 ⋅ 𝑐 𝑞| < 𝑞3/4

Dec 2013 Visions of Cryptography, Weizmann Inst. 19

Correctness of Zero-Testing

 If c = 𝑟𝑔/𝑧𝑘 encodes zero at level 𝑘 then

ℎ𝑧𝑘 𝑔 ⋅ 𝑟𝑔 𝑧𝑘 = ℎ𝑟 (mod 𝑞)

◦ We know that |𝑟𝑔| < 𝑞1/8, since all valid

encodings have small numerators

◦ Hence also |𝑟| < 𝑞1/8+𝜖

 This assumes 𝑔−1 is small in the field of fractions

◦ Since |ℎ| < 𝑞1/2+𝜖 then |ℎ𝑟| < 𝑞3/4

 ℎ𝑧𝑘 𝑔 ⋅ 𝑟𝑔 𝑧𝑘 𝑞 = ℎ𝑟 and |ℎ𝑟| < 𝑞3/4

so the zero-test pass

Dec 2013 Visions of Cryptography, Weizmann Inst. 20

Correctness of Zero-Testing (2)

 The converse is a bit more complicated:

 Let 𝑔, ℎ be such that the two ideals

𝑔𝑅, ℎ𝑅 are co-prime

Lemma: Let 𝑒 be s.t. |𝑒ℎ| < 𝑞/2 and let

𝑤 = 𝑒ℎ/𝑔 𝑞. If 𝑤 is small enough,

|𝑤𝑔| < 𝑞/2, then 𝑒 ∈ 𝑔𝑅

◦ i.e., 𝑒 = 𝑔𝑟 for some 𝑟

Proof: 𝑤𝑔 = 𝑒ℎ over 𝑅 (since both < 𝑞/2)

and since ℎ, 𝑔 co-prime then 𝑔|𝑒.

Dec 2013 Visions of Cryptography, Weizmann Inst. 21

Correctness of Zero-Testing (3)

Lemma: Let 𝑒 be s.t. |𝑒ℎ| < 𝑞/2 and let

𝑤 = 𝑒ℎ/𝑔 𝑞. If 𝑤 is small enough,

|𝑤𝑔| < 𝑞/2, then 𝑒 ∈ 𝑔𝑅

Corollary: if 𝑒/𝑧𝑘 is a valid level-𝑘 encoding

 (|𝑒ℎ| < 𝑞/2) and it passes zero-test

 (𝑤 is small), so it is an encoding of zero

Dec 2013 Visions of Cryptography, Weizmann Inst. 22

Security of Zero-Testing

 This Zero-Test procedure provides

functionality, not security

◦ Easy to come up with an “invalid encoding”

that passes the zero test.

 If we need security, publish many 𝑝𝑧𝑡’s
for many different mid-size ℎ’es

◦ Check | 𝑝𝑧𝑡 ⋅ 𝑐 𝑞| < 𝑞3/4 for all of them

◦ Can prove that whp over the ℎ’es, only valid

zero-encodings pass this test.

Dec 2013 Visions of Cryptography, Weizmann Inst. 23

What’s Hard

 Some degree-𝑘 + 1 functions seem hard to

compute, or even test

Multilinear-DDH (MDDH)

 For 𝑘 + 1 level-1 encoding of random

elements, 𝑐𝑎0
(1)
, … , 𝑐𝑎𝑘

(1)
,

 and another level-𝑘 encoding 𝑐𝑏
(𝑘)

,

 hard to distinguish 𝑏 = 𝑎0 ⋅ … ⋅ 𝑎𝑘 𝑚𝑜𝑑 𝑔

from random 𝑏

Dec 2013 Visions of Cryptography, Weizmann Inst. 24

What’s Not Hard

 Other degree-𝑘 + 1 functions are easy

Multilinear-DDH’

 For 𝑘 + 1 level-1 encoding of random

elements, 𝑐𝑎0
(1)
, … , 𝑐𝑎𝑘

(1)
,

 and another level-1 encoding 𝑐𝑏
(1)

,

 easy to decide if 𝑏 = 𝑎0 ⋅ … ⋅ 𝑎𝑘 (𝑚𝑜𝑑 𝑔)

Dec 2013 Visions of Cryptography, Weizmann Inst. 25

What’s the Difference?

 A “target group” problem includes some
elements encoded at the highest level (𝑘)

◦ Such problems are seemingly hard in these
encodings

 A “source group” problem includes only
elements encoded at levels ≤ 𝑘

◦ Include things like decision-linear assumption

◦ These problems are easy, assuming that we
indeed provide the public-key elements 𝑓0, 𝑓1

Dec 2013 Visions of Cryptography, Weizmann Inst. 26

Why the Difference?

 These encodings are subject to a “weak
discrete-logarithm” attacks. Given:

◦ Level-𝑖 encoding of some 𝑎, and

◦ Level-𝑗 encoding of 0 (e.g., 𝑓0), with 𝑖 + 𝑗 ≤ 𝑘

 Can compute “in the clear” 𝑎′ ∈ 𝑎 + 𝑔𝑅

◦ I.e., 𝑎′ = 𝑎 + 𝑔𝑟 for some 𝑟

 𝑎′ is not small, so you cannot re-encode it
at level 1 and break MDDH or similar

◦ But if you have 𝑔′, 𝑎0
′ , … , 𝑎𝑘

′ and 𝑏′, you can
check whether 𝑏′ = 𝑎0

′ ⋅ … ⋅ 𝑎𝑘
′ mod 𝑔′

Dec 2013 Visions of Cryptography, Weizmann Inst. 27

Dealing with “Weak DL” Attacks

 Some applications only rely on “target

group” assumptions

◦ Those are not affected by the attack

 More applications can get by without

providing 𝑓0, 𝑓1, so attack does not apply

 Or use other MMAPs

◦ [CTL’13] seemingly not susceptible to weak-DL

◦ Can perhaps “immunize” [GGH’13] against it

 Using GGH-encoded matrices and their eigenvalues

Dec 2013 Visions of Cryptography, Weizmann Inst. 28

Computation Problems

 The source/target distinction is about

decision problems

 Computation problems have their own issues

 Roughly speaking, anything that requires

division is hard

◦ But division in the ring 𝑅𝑞 is easy: from 𝑐𝑎1
(𝑖)
, 𝑐𝑎2

(𝑗)

we can compute 𝑑 = 𝑐𝑎1
𝑖

𝑐𝑎2
𝑗

𝑞

◦ 𝑑 is unlikely to be a valid encoding, can perhaps

be discarded using the “secure zero-test”

Dec 2013 Visions of Cryptography, Weizmann Inst. 29

APPLICATIONS OF
MMAPS

Dec 2013 Visions of Cryptography, Weizmann Inst. 30

Application I:

(𝑘 + 1)-partite key exchange
 Public parameters include 𝑓0, 𝑓1, 𝑝𝑧𝑡

 𝑃𝑖 draws small 𝑚𝑖, 𝑟𝑖, publishes the level-1

encoding 𝑢𝑖 = 𝑐𝑚𝑖

(1)
= 𝑟𝑖𝑓0 +𝑚𝑖𝑓1

 𝑃𝑖 computes level-𝑘 encoding of product
𝑠𝑖 = 𝑚𝑖 ⋅ ∏𝑗≠𝑖 𝑢𝑗

 All parties have level-𝑘 encodings of the
same thing

◦ Indistinguishable from encoding of a random
element, under MDDH

 How to get a shared secret key out of it?

Dec 2013 Visions of Cryptography, Weizmann Inst. 31

Extracting Canonical Representation

 All of 𝑠0, … , 𝑠𝑘 encode the same thing

 𝑝𝑧𝑡𝑠𝑖 − 𝑝𝑧𝑡𝑠𝑗 𝑞
= 𝑝𝑧𝑡 𝑠𝑖 − 𝑠𝑗 𝑞

 is small ∀𝑖, 𝑗

Roughly use MSBs of 𝑝𝑧𝑡 ⋅ 𝑠𝑖 𝑞 as a shared key

 Public params also include

◦ Seed 𝜎 of strong randomness extractor

◦ Random element 𝛿 ∈ R𝑞

 Shared key computed as

𝐾𝑖 = 𝑒𝑥𝑡𝜎 𝑀𝑆𝐵 𝛿 + 𝑝𝑧𝑡 ⋅ 𝑠𝑖 𝑞

◦ Whp over 𝛿, all 𝐾𝑖’s are equal

◦ Indistinguishable to observer from random bits

Dec 2013 Visions of Cryptography, Weizmann Inst. 32

Application II: Witness Encryption

 “Encryption without any key”

◦ Relative to an arbitrary riddle

◦ Defined here relative to exact-cover (XC)

 Use NP-hardness to get any NP statement

 Message encrypted wrt to XC instance

◦ Encryptor need not know a solution, or even

if a solution exists

 Anyone with a solution can decrypt

 Semantic-security if no solution exists

Dec 2013 Visions of Cryptography, Weizmann Inst. 33

Recall Exact Cover

 Instance: A universe [𝑛] and a collection

of subsets 𝑆𝑖 ⊂ [𝑛], 𝑖 = 1,… ,𝑚

 A solution: sub-collection of the 𝑆𝑖 ’s that

forms a partition of [𝑛], i.e.,

◦ Subsets are pairwise disjoint, and

◦ Their union is the entire [𝑛].

Dec 2013 Visions of Cryptography, Weizmann Inst. 34

The [GGSW13] Construction

 On an XC instance (𝑛, 𝑆1, … , 𝑆𝑚) and
a message 𝑀

◦ Use 𝑛-linear maps

◦ Choose 𝑛 random elements 𝑎1, … , 𝑎𝑛

◦ For every subset 𝑆𝑖 = {𝑗1, … , 𝑗𝑡}, publish a

level-𝑡 encoding 𝑐𝐴𝑖
(𝑡)

 of 𝐴𝑖 = 𝑎𝑗1 ⋅ … ⋅ 𝑎𝑗𝑡

◦ Use a level-𝑛 encoding 𝑐𝑈
(𝑛)

 of 𝑈 = 𝑎1 ⋅ … ⋅ 𝑎𝑛

to encrypt, by publishing the ciphertext

𝐶 = 𝑒𝑥𝑡𝜎 𝑀𝑆𝐵 𝛿 + 𝑝𝑧𝑡 ⋅ 𝑐𝑈
(𝑛)

𝑞
⊕𝑀

Dec 2013 Visions of Cryptography, Weizmann Inst. 35

The [GGSW] Construction (2)

 If 𝑆𝑖1 , … , 𝑆𝑖𝑘 is a solution, then multiplying

the corresponding 𝑐𝐴𝑖
(𝑡𝑖)’s we get a level-𝑛

encoding of U, then we can decrypt

 Every non-solvable instance defines a
computational problem

◦ Distinguish a level-𝑛 encoding of 𝑈 from a
level-𝑛 encoding of random

 We assume all these problems to be hard

◦ Is this a reasonable assumption to make?

Dec 2013 Visions of Cryptography, Weizmann Inst. 36

Application III: Full-Domain Hash

 Consider the following hash function,

𝐻 ∶ 0,1 ℓ → level-ℓ-encodings:

◦ Public version of Naor-Reingold PRF

◦ Let 𝑎1,0,𝑎1,1, 𝑎2,0,𝑎2,1, … , 𝑎ℓ,0, 𝑎ℓ,1 be

random elements, and publish their level-1

encoding 𝒄 = {𝑐𝑎𝑖,𝑏
(1)

: 𝑖 = 1,… , ℓ, 𝑏 = 0,1},

𝐻𝑐 𝑋 = 𝑐𝑎1,𝑋1
(1)

⊠ 𝑐𝑎2,𝑋2
1

… ⊠ 𝑐𝑎ℓ,𝑋ℓ
(1)

 What can you do with it?

Dec 2013 Visions of Cryptography, Weizmann Inst. 37

BLS-type Signatures [HWS13]

 Use 𝑘 = ℓ + 1, publish also 𝑐𝑎𝑜
(1)

◦ 𝑎0 is the secret key

 𝜎 = 𝑆𝑖𝑔 𝑋 = 𝑎0 × 𝐻𝑐 (𝑋)

◦ Level-ℓ encoding of an (ℓ + 1)-product

 Verify using zero-test:

𝜎 ⊠ 𝑓1 =?= 𝑐𝑎𝑜
1
⊠𝐻𝑐 𝑋

 Can be aggregated, made identity-based

Dec 2013 Visions of Cryptography, Weizmann Inst. 38

“Programmable” Hash Functions

[FHPS13]
 For any fixed “basis” 𝑏1, … , 𝑏𝑘, 𝑏

∗ (encoded
at level 1), can generate a random 𝑐 as
above with a trapdoor 𝑡𝑑 s.t.:

◦ Using 𝑡𝑑 we can find for any 𝑋 a “representation
of 𝐻𝑐 (𝑋) in this basis”

 𝐻𝑐 𝑋 = 𝛼𝑋 ⊠ 𝑏1 ⊠⋯⊠ 𝑏𝑘 + 𝐵𝑋 ⊠𝑏∗

 𝛼 at level zero, 𝐵 at level 𝑘 − 1

◦ Roughly, for all but a random 1/𝑝𝑜𝑙𝑦 fraction of
the 𝑋’es, we have 𝛼𝑋 = 0

 This is useful for “partition-type” proofs of
security

Dec 2013 Visions of Cryptography, Weizmann Inst. 39

Obfuscation [GGHRSW13]

 Goal: take an arbitrary circuit and “encrypt
it”, so that:

◦ Can still evaluate the result on any input

◦ But “not much else”

 Formulating “not much else” is hard

◦ [BGIRSVY01] show that some natural
formulations cannot be met

◦ Also defined the weaker notion of
“indistinguishability Obfuscation” (iO):

◦ If 𝐶1, 𝐶2 compute the same function, then
𝑂𝐵𝐹 𝐶1 ≈ 𝑂𝐵𝐹(𝐶2)

Dec 2013 Visions of Cryptography, Weizmann Inst. 40

iO for 𝑁𝐶1

 Begin with a corollary of Barrington’s

theorem, we can recognize L ∈ 𝑁𝐶1 via

matrix multiplication:

◦ 𝐶𝐿 represented by a sequence of matrices of

length exp 𝑑𝑒𝑝𝑡ℎ 𝐶𝐿

◦ Input 𝑥 determines a sub-sequence

◦ 𝑥 ∈ 𝐿 iff their product is the identity

Dec 2013 Visions of Cryptography, Weizmann Inst. 41

Obfuscating 𝐶𝐿

 Randomize the matrices for 𝐶𝐿

◦ How to randomize is the hard part, need to

counter several attacks

 Provide level-1 encoding of matrices

 To evaluate on 𝑥

◦ Choose a subset and multiply the encoding

◦ Use zero-testing to check for identity

Dec 2013 Visions of Cryptography, Weizmann Inst. 42

Security

 Mostly heuristic, but supported by

generic-group arguments

 Every pair of circuits 𝐶1, 𝐶2, defines a

decision problem

◦ We assume that they are all hard

 These are all source-group assumptions

◦ Since the matrices are encoded at level 1

◦ But we are not giving 𝑓0, 𝑓1, so the weak-DL

attack does not apply

Dec 2013 Visions of Cryptography, Weizmann Inst. 43

Summary

 Can approximate cryptographic MMAPs

◦ Using SWHE with “handicapped secret key”

◦ Known constructions from NTRU, “integer HE”

◦ Can we do the same thing from other schemes?

 Enabling many new applications

◦ But hardness assumptions are strong, “ugly”

◦ In desperate need of a coherent theory

 Practical performance lacking

◦ Worse than the [Gen09] HE scheme

Dec 2013 Visions of Cryptography, Weizmann Inst. 44

