Graded Encoding Schemes: Survey of Recent Attacks

Shai Halevi (IBM Research)
NYC Crypto Day
January 2015

Graded Encoding Schemes (GES)

- Very powerful crypto tools
- Resembles "Cryptographic Multilinear Maps"
- Enable computation on "hidden data"
- Similar to homomorphic encryption (HE)
- But HE is too "all or nothing"
- No key: result is meaningless

- Has key: can read result and intermediate values

Graded Encoding Schemes (GES)

- Leak "some information" about result
- Can tell if results equals zero
- Not decrypt result or intermediate values
- This partial leakage can do great things
- Multipartite non-interactive key-exchange, Witness-encryption, Attribute-based encryption, Cryptographic code obfuscation, Functional encryption, ...
- But implementing "limited leakage" is messy

Plan for this Talk

- Background
- Some details of [GGH13], [CLT13]
- The [GGH13] "zeroizing" attack
- New attacks (Cheon,Han,Lee,Ryu,Stehle'14)
- Extensions of the attacks (Coron, Gentry, H, Lepoint, Maji, Miles, Raykova, Sahai, Tibouchi'15)
- Limitations of attacks
- Tentative conclusions

Constructing GES

The GGH Recipe:

- Start from some HE scheme

- Publish a "defective secret key"
- Called "zero-test parameter"
- Can be used to identify encryptions of zero
- Cannot be used for decryption
- Instantiated from NTRU in [GGH13], from approximate-GCD in [CLT13]
- Another proposal in [GGH14] (but not today)

The [GGH13] Construction

- Works in polynomial rings $R=Z[X] / F_{n}(X)$
- Also $R_{q}=R / q R=Z_{q}[X] / F(X)$
- q is a "large" integer (e.g., $q \approx 2^{\sqrt{n}}$)
- Secrets are z $\in_{\$} \boldsymbol{R}_{q}$ and a "small" $g \in \mathbf{R}$
- "Plaintext space" is $R_{g}=\mathrm{R} / g \mathrm{R}$
- Level- i encoding of $\alpha \in R_{g}$ is of form $\left[{ }^{e} / z^{i}\right]_{q}$
- e is a "small" element in the g-coset of α

The [GGH13] Construction

- Secrets are $\mathbf{z} \in_{\$} \boldsymbol{R}_{\boldsymbol{q}}$ and a "small" $\boldsymbol{g} \in \boldsymbol{R}$
- "Plaintext space" is $R_{g}=R / g R$
- Level- i encoding of $\boldsymbol{\alpha} \in \boldsymbol{R}_{\boldsymbol{g}}$ is of form $\left[{ }^{e} /_{z^{i}}\right]_{q}$
- e is a "small" element in the g-coset of α
- Can add, multriply encodings:
$\left[\text { enc }_{i}(\boldsymbol{\alpha})+\text { enc }_{i}(\boldsymbol{\beta})\right]_{q}=$ enc $_{i}(\boldsymbol{\alpha}+\boldsymbol{\beta})$ $\left[\mathrm{enc}_{\mathrm{i}}(\boldsymbol{\alpha}) \cdot \mathrm{enc}_{\mathrm{j}}(\boldsymbol{\beta})\right]_{\mathrm{q}}=\mathrm{enc}_{\mathrm{i}+\mathrm{j}}(\boldsymbol{\alpha} \boldsymbol{\beta})$
- As long as e remains smaller than q

The [GGH13] Zero-Test

- Level-k encoding of zero is $u=\left[\frac{r \cdot g}{z^{k}}\right]_{q}$
- Zero-test parameter is $p_{z t}=\left[\mathrm{hz} z^{k} / g\right]_{q}$
- h is small-ish
- Multiplying we get $\left|\left[u \cdot p_{z t}\right]_{q}\right|=|r \cdot h| \ll q$
- Because both r, h are small
- If $u=e n c_{k}(\alpha \neq 0)$ then $\left|\left[e \cdot p_{z t}\right]_{q}\right| \approx q$

The [CLT13] Construction

- Similar idea, but using CRT representation modulo a composite integer $N=p_{1} \cdot \ldots \cdot p_{t}$
- Assuming that factoring N is hard
- The p_{i} 's are all the same size
- Secrets are p_{i} 's, $\mathrm{z} \in_{\$} Z_{N}$, and $g_{i} \ll p_{i}$'s
- "Plaintext space" consists of t-vectors $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}\right) \in Z_{g_{1}} \times Z_{g_{2}} \times \cdots \times Z_{g_{t}}$

The [CLT13] Construction

- Level-i encoding of vector ($\alpha_{1} \ldots \alpha_{t}$) has the form $\left[{ }^{\operatorname{CRT}\left(e_{1}, \ldots, e_{t}\right)} / z_{z}\right]_{\mathrm{N}}$, where $e_{i}=r_{i} g_{i}+\alpha_{i}$
- e_{i} 's are small element in the g_{i}-cosets of α_{i} 's
$\operatorname{CRT}\left(e_{1}, \ldots, e_{t}\right)$ is the element $\bmod N$ with this CRT decomposition

The [CLT13] Construction

- Level- i encoding of vector ($\alpha_{1} \ldots \alpha_{t}$) has the form $\left[{ }^{\operatorname{CRT}\left(e_{1}, \ldots, e_{t}\right)} / z_{z}\right]_{\mathrm{N}}$, where $e_{i}=r_{i} g_{i}+\alpha_{i}$
- e_{i} 's are small element in the g_{i}-cosets of α_{i} 's
- Can add, multiply encodings
$\left[\mathrm{en} c_{i}(\vec{\alpha})+\mathrm{enc} c_{i}(\overrightarrow{\boldsymbol{\beta}})\right]_{q}=\mathrm{en} c_{i}(\overrightarrow{\alpha+\boldsymbol{\beta}})$
$\left[\operatorname{enc} c_{i}(\overrightarrow{\boldsymbol{\alpha}}) \cdot \operatorname{enc} c_{j}(\overrightarrow{\boldsymbol{\beta}})\right]_{q}=\operatorname{enc} c_{i+j}(\overrightarrow{\boldsymbol{\alpha} \boldsymbol{\beta}})$
- As long as the e_{i} 's remain smaller than the p_{i} 's

The [CLT13] Zero-Test

- Let $p_{i}^{*} \frac{N}{=} \frac{N}{p_{i}} i=1, \ldots, t$
- Observation: Fix any $\left(e_{1}, \ldots, e_{t}\right)$. Then

$$
\operatorname{CRT}\left(p_{1}^{*} e_{1}, \ldots, p_{t}^{*} e_{t}\right)=\sum_{i} p_{i}^{*} e_{i} \bmod N
$$

- The CLT zero-test parameter is

$$
p_{z t}=\left[\operatorname{CRT}\left(p_{1}^{*} h_{1} g_{1}^{-1}, \ldots, p_{t}^{*} h_{t} g_{t}^{-1}\right) \cdot z^{k}\right]_{N}
$$

- $\left|h_{i}\right| \ll p_{i}$

The [CLT13] Zero-Test
$\cdot p_{z t}=\left[\operatorname{CRT}\left(p_{1}^{*} h_{1} g_{1}^{-1}, \ldots, p_{t}^{*} h_{t} g_{t}^{-1}\right) \cdot z^{k}\right]_{N}$

- An encoding of $(0, \ldots, 0)$ at level k has the form $u=\left[\operatorname{CRT}\left(\mathrm{r}_{1} g_{1}, \ldots, r_{t} g_{t}\right) / z_{z^{k}}\right]_{N}$
- So $u \cdot p_{z t}=\operatorname{CRT}\left(p_{1}^{*} h_{1} r_{1}, \ldots, p_{t}^{*} h_{t} r_{t}\right)=\sum_{i} p_{i}^{*} h_{i} r_{i}$
- $\left|h_{i} r_{i}\right| \ll p_{i}$, and therefore $\left|p_{i}^{*} h_{i} r_{i}\right| \ll N$
- The sum is still much smaller than N
- If u is an encoding of non-zero at level k then $\left|u \cdot p_{z t}\right| \approx N$

Common properties of GGH, CLT

- Plaintext is a vector of elements
- Size-1 vector In GGH
- There is also a GGH variant with longer vectors
- An encoding u of $\left(\alpha_{1}, \ldots, \alpha_{t}\right)$ is "related" to a vector $\left(e_{1}, \ldots, e_{t}\right)$ with $e_{i}=r_{i} g_{i}+\alpha_{i}$
- We will write $u \sim\left(e_{1}, \ldots, e_{t}\right)$
- Finding the e_{i} 's means breaking the scheme
- Add/mult act on the e_{i} 's over the integers
- No modular reduction

Common properties of GGH, CLT

- If u is an encodings of zero at the top level
- $u \sim\left(r_{1} g_{1}, \ldots, r_{t} g_{t}\right)$
- then by zero-testing we get $\operatorname{ztst}(u)=\sum_{i} \sigma_{i} r_{i}$
- σ_{i} 's are system parameters, independent of u - $\sigma=h$ for GGH, $\sigma_{i}=p_{i}^{*} h_{i}$ for CLT
- The computation is over the integers, without modular reduction
(If u encodes non-zero then we do not get an equality over the integers)

Attacks

The [GGH13] "zeroizing" attack

- Say we have level- i GGH encoding of zero
- $u_{0} \sim\left(r_{0} g\right)$
- ... and many other level-($k-i$) encodings
- $u_{j} \sim\left(e_{j}\right)$
- Then $u_{0} u_{j} \sim\left(e_{j} r_{0} g\right)$, using zero-test we get

$$
y_{j}=\operatorname{ztst}\left(u_{0} u_{j}\right)=h r_{0} \cdot e_{j}
$$

- We recover the e_{j} 's upto the factor $h^{\prime}=h r_{0}$
- Can compute GCDs to find, remove h^{\prime}

The [GGH13] "zeroizing" attack

- This attack does not work for CLT
- At least not "out of the box"
- Also doesn't work on the "vectorised" GGH variant
- We have vectors $u_{j} \sim\left(\boldsymbol{e}_{j, 1}, \ldots, \boldsymbol{e}_{j, t}\right)$
- Applying the same procedure gives the inner products $y_{j}=\sum_{i} r_{0, i} \sigma_{i} \cdot \boldsymbol{e}_{j, i}$
- Only one y_{j} per vector of $e_{j, i}$'s
- Not enough to do GCD's

The Cheon et al. Attack [CHLRS14]

- A major "upgrade" of the [GGH13] attack
- When applicable, completely breaks CLT
- i.e., you can factor N, learn all the plaintext
- Also works for the "vectorised" GGH
- Not a complete break, but as severe as zeroizing attacks on the non-vectorised GGH

The Cheon et al. Attack [CHLRS14]

- Say we have many level-i zero-encodings
- $\mathbf{u}_{\mathrm{j}} \sim\left(a_{\mathrm{j}, 1} \mathrm{~g}_{1}, \ldots, a_{\mathrm{j}, \mathrm{t}} \mathrm{g}_{\mathrm{t}}\right), \mathrm{j}=1,2, \ldots$
- ... two level- i^{\prime} encodings
- $v \sim\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{\mathfrak{t}}\right), v^{\prime} \sim\left(\boldsymbol{b}_{1}^{\prime}, \ldots, \boldsymbol{b}_{t}^{\prime}\right)$
$\bullet \ldots$ and many encodings at level $k-i-i^{\prime}$
- $\mathrm{w}_{\mathrm{j}} \sim\left(c_{\mathrm{j}, 1}, \ldots, c_{\mathrm{j}, t}\right), \mathbf{j}=1,2, \ldots$
- For each j_{1}, j_{2}, we have a level- k encoding
- $u_{j_{1}} v w_{j_{2}} \sim\left(a_{j_{1}, 1} b_{1} c_{j_{2}, 1} \cdot g_{1}, \ldots, a_{j_{1}, t} b_{t} c_{j_{2}, t} \cdot g_{t}\right)$
- Similarly for $u_{j_{1}} v^{\prime} w_{j_{2}}$

The Cheon et al. Attack [CHLRS14]

- Zero-testing we get
- $\boldsymbol{y}_{j_{1}, j_{2}}=\mathbf{z t s t}\left(\mathbf{u}_{\mathrm{j}_{1}} \mathbf{v} \mathbf{w}_{\mathbf{j}_{2}}\right)=\sum_{\mathrm{i}} \boldsymbol{a}_{\mathrm{j}_{1}, \mathbf{i}} \boldsymbol{b}_{\mathbf{i}} \boldsymbol{c}_{\mathrm{j}_{2}, \mathrm{i}} \cdot \sigma_{\mathbf{i}}$
- Similarly for $y_{j_{1}, j_{2}}^{\prime}=\operatorname{ztst}\left(u_{j_{1}} v^{\prime} w_{j_{2}}\right)$
- In vector form: $y_{j_{1}, j_{2}}=$

$$
\left(a_{j_{1}, 1}, \ldots, a_{j_{1}, t}\right) \times\left(\begin{array}{ccc}
b_{1} \sigma_{1} & & 0 \\
0 & \ddots & \\
& & b_{t} \sigma_{t}
\end{array}\right) \times\left(\begin{array}{c}
c_{j_{2}, 1} \\
\vdots \\
c_{j_{2}, t}
\end{array}\right)
$$

The Cheon et al. Attack [CHLRS14]

- Zero-testing we get
- $\boldsymbol{y}_{j_{1}, j_{2}}=\mathbf{z t s t}\left(\mathbf{u}_{\mathbf{j}_{1}} \mathbf{v} \mathbf{w}_{\mathbf{j}_{2}}\right)=\sum_{\mathbf{i}} \boldsymbol{a}_{\mathbf{j}_{1}, \mathbf{i}} \boldsymbol{b}_{\mathbf{i}_{\mathbf{i}}} \boldsymbol{c}_{\mathrm{j}_{2}, \mathbf{i}} \cdot \boldsymbol{\sigma}_{\mathbf{i}}$
- Similarly for $y_{j_{1}, j_{2}}^{\prime}=\operatorname{ztst}\left(u_{j_{1}} v^{\prime} w_{j_{2}}\right)$
- In vector form: $y_{j_{1}, j_{2}}=$

$$
\underbrace{\left(a_{j_{1}, 1}, \ldots, a_{j_{1}, t}\right.}_{\stackrel{\rightharpoonup}{u_{j_{1}}}}) \times \underbrace{\left(\begin{array}{ccc}
b_{1} \sigma_{1} & & 0 \\
0 & \ddots & \\
& & b_{t} \sigma_{t}
\end{array}\right) \times\left(\begin{array}{c}
c_{j_{2}, 1} \\
\vdots \\
c_{j_{2}, t}
\end{array}\right)}_{V}
$$

The Cheon et al. Attack [CHLRS14]

- Putting the $y_{j_{1}, j_{2}}$'s in a $t \times t$ matrix we get

$$
Y=\left[y_{j_{1}, j_{2}}\right]=U \times V \times W
$$

- U has the $\overrightarrow{u_{j_{1}}}$'s as rows
- V is as before

Whp U,V,W are invertible

- W has the $\overrightarrow{w_{j_{2}}}$'s as columns
- Similarly $Y^{\prime}=\left[y_{j_{1}, j_{2}}^{\prime}\right]=U \times V^{\prime} \times W$
- We know Y, Y^{\prime} but not U, V, V^{\prime}, W
- Importantly, equalities hold over the integers

The Cheon et al. Attack [CHLRS14]

- Once we have Y, Y^{\prime} we compute

$$
\begin{aligned}
Z=Y^{-1} \times Y^{\prime} & =(U V W)^{-1} \times\left(U V^{\prime} W\right) \\
& \left.=W^{-1} \times V^{-1} \times V^{\prime}\right) \times W
\end{aligned}
$$

-Recall that $V^{-1} \times V^{\prime}=\left(\begin{array}{ccc}b_{1}^{\prime} / b_{1} & & 0 \\ 0 & \ddots & \\ & & b_{t}^{\prime} / b_{t}\end{array}\right)$

- Eigenvalues of $V^{-1} \times V^{\prime}$ are $b_{i}^{\prime} / b_{i}, i=1, \ldots, t$
- Same for Z (since $V^{-1} \times V^{\prime}, Z$ are similar)

The Cheon et al. Attack [CHLRS14]

- After computing Z, compute its eigenvalues

$$
\left\{b_{i}^{\prime} / b_{i}: i=1, \ldots, t\right\}
$$

- We get b_{i}, b_{i}^{\prime} upto the factor $\operatorname{GCD}\left(b_{i}, b_{i}^{\prime}\right)$
- Often knowing the ratios b_{i}^{\prime} / b_{i} is enough to violate hardness assumption
- For CLT, can use b_{i}^{\prime} / b_{i} to factor N :

The Cheon et al. Attack [CHLRS14]

- For CLT, can use b_{i}^{\prime} / b_{i} to factor N :
- Recall $v=\left[\operatorname{CRT}\left(\boldsymbol{b}_{1}, \ldots, b_{i}, \ldots, b_{t}\right) / z^{i^{\prime}}\right]_{N}$

$$
v^{\prime}=\left[\operatorname{CRT}\left(b_{1}^{\prime}, \ldots, b_{i}^{\prime}, \ldots, b_{t}^{\prime}\right) / z^{i^{\prime}}\right]_{N}
$$

- Express b_{i}^{\prime} / b_{i} as a simple fraction $b_{i}^{\prime} / b_{i}=d_{i}^{\prime} / d_{i}$
- d_{i}, d_{i}^{\prime} are co-prime
- $x_{i}=\left[d_{i} v^{\prime}-d_{i}^{\prime} v\right]_{N}$ has 0 CRT component for p_{i}
- Whp the other CRT components are not zero
\rightarrow Recover $p_{i}=\operatorname{GCD}\left(N, x_{i}\right)$

Extending the Attack

- Easy to see that the same attack still works as long as $u_{j_{1}} \cdot v \cdot w_{j_{2}}$ and $u_{j_{1}} \cdot v^{\prime} \cdot w_{j_{2}}$ are encoding of zeros for every j_{1}, j_{2}
- Don't need the $u_{j_{1}}$'s themselves to encode zero
- eng.
$\mathrm{u}_{\mathrm{j}} \sim\left(a_{\mathrm{j}, 1} @_{1}, a_{j, 2}, a_{j, 3}\right)$,
$v \sim\left(b_{1}, b_{2}\right.$ (22), $\left.b_{3}\right)$ and $v^{\prime} \sim\left(b_{1}^{\prime}, b_{2}^{\prime}\left(g_{2}\right) b_{3}^{\prime}\right)$, $w_{j} \sim\left(c_{j, 1}, c_{j, 2}, c_{j, 3}(93)\right.$

Attack Consequences

Some Schemes are Broken

- For example, schemes that publish low-level encoding of zeros are likely broken
- Publishing zero-encoding would be useful
- E.g., to re-randomize encodings by adding a subset-sum of these zero encodings
- Even some obfuscation schemes
- E.g., the "simple IO scheme" from [Zim14] (this requires further extending the attacks)

Many Assumptions are Broken

- "Source Group" assumptions:
- Given level-1 encodings of elements $\alpha_{1}, \alpha_{2}, \ldots$, cannot tell if $\operatorname{expr}(\vec{\alpha})=0$
- $\operatorname{expr}(*)$ has degree $\leq k-3$ (say)
- Generally broken, use the attack with
- $\mathbf{u}_{\mathrm{j}} \sim \operatorname{expr}(\vec{\alpha}) \cdot \alpha_{j}$
- $\mathrm{v} \sim \alpha_{1}, \mathrm{v}^{\prime} \sim \alpha_{2}$
- $\mathbf{w}_{\mathbf{j}} \sim \alpha_{\mathrm{j}}$

Many Assumptions are Broken

- Subgroup-Membership assumptions:
- Input: encoding of ($\alpha, \$, \ldots, \$, 0, \ldots, 0$)
- And some other encodings too
- Goal: distinguish $\alpha=0$ from $\alpha=\$$
- Would be easy if we could get an encoding of (*, $\mathbf{0}, \ldots, \mathbf{0}, \phi, \ldots, \phi)$
- Assumption: it is hard otherwise
- Broken if we can get encoding of the form $(0,0, \ldots, 0, \phi, \ldots, \phi)$

Many Assumptions are Broken

- Currently we have no candidate GES with hard source-group or subgroup-membership problems

A Suggested Fix

- Instead of $u_{j_{1}} v w_{j_{2}} \sim \overrightarrow{0}$, maybe we can use

$$
\delta=u_{j_{1}} v w_{j_{2}}-\widehat{u}_{j_{1}} \widehat{v} \widehat{w}_{j_{2}} \sim \overrightarrow{0}
$$

- For encodings u_{j}, v, w and $\widehat{u_{j}}, \widehat{v}, \widehat{w_{j}}$
- This was suggested as a fix to the attacks
- It is always possible to convert $u_{j_{1}} v w_{j_{2}} \sim \overrightarrow{0}$ to get the weaker condition [BWZ14]
- Similar fix mentioned in [GGHZ14]
- But the attack can be extended to defeat it

Further Extending the Attack

- We mount the same attack, using vectors of double the length $z t s t(\delta)=\left(\sum_{i} a_{\mathrm{j}_{1}, \mathrm{i}} b_{i} c_{\mathrm{j}_{2}, \mathrm{i}} \cdot \sigma_{\mathrm{i}}-\sum_{i} \widehat{a}_{\mathrm{j}_{1}, \mathrm{i}} \widehat{b}_{\mathrm{i}} \hat{\mathrm{c}}_{\mathrm{j}_{2}, \mathrm{i}} \cdot \sigma_{\mathrm{i}}\right) / g$
- Similar to before, but now we have $1 / g$ factor
- $g=\operatorname{CRT}\left(g_{1}, \ldots, g_{t}\right)$ in CLT
- Equality holds over the integers/rationals!
- So $Y=U \times V \times W \cdot 1 / g$, and the same for Y^{\prime}
- When setting $Z=Y^{-1} \times Y^{\prime}$, the $1 / g$ falls off

Limitations of the Attacks

- Rely on partitioning $y_{j_{1}, j_{2}}=u_{j_{1}} \cdot v \cdot w_{j_{2}} \sim \overrightarrow{0}$
- We can vary $u_{j_{1}}$ without affecting $v, w_{j_{2}}$
- Similarly can vary $w_{j_{2}}$ without affecting $v, u_{j_{1}}$
- Many applications do not give such nicely partitioned encoding of zeros
- E.g., [GGHRSW13] use Barrington BPs
- You get encoding of zeros in the form $\vec{u} \times \prod_{i} V_{i} \times \vec{w}$
- But changing any bit in the input affects many V_{i} 's
- Some applications have explicit binding factors

Final Musings About Security

- Current Graded Encoding Schemes "hide" encoded values behind mod- q relations
- Solving mod-q relations directly involves solving lattice problems (since we need small solutions)
- But zero-test parameter lets you "strip" the mod-q part, get relations over the integers
- No more lattice problems, any solution will do
- Can only get these relations when you have an encoding of zero

Final Musings About Security

- Security relies on the adversary's inability to solve these relations
- By the time you get a zero, the relations are too complicated to solve
- Security feels more like HFE than FHE
- HFE: Hidden Field Equations
- FHE: Fully-Homomorphic Encryption
- It's going to be a bumpy ride..

