

Graded Encoding Schemes: Survey of Recent Attacks

Shai Halevi (IBM Research) NYC Crypto Day January 2015

Graded Encoding Schemes (GES)

Very powerful crypto tools

- Resembles "Cryptographic Multilinear Maps"
- Enable computation on "hidden data"
 - Similar to homomorphic encryption (HE)
- But HE is too "all or nothing"
 - No key: result is meaningless

Has key: can read result and intermediate values

Graded Encoding Schemes (GES)

- Leak "some information" about result
 - Can tell if results equals zero

- Not decrypt result or intermediate values
- This partial leakage can do great things
 - Multipartite non-interactive key-exchange, Witness-encryption, Attribute-based encryption, Cryptographic code obfuscation, Functional encryption, ...
- But implementing "limited leakage" is messy

Plan for this Talk

Background

- Some details of [GGH13], [CLT13]
- The [GGH13] "zeroizing" attack

New attacks (Cheon, Han, Lee, Ryu, Stehle'14)

- Extensions of the attacks (Coron, Gentry, H, Lepoint, Maji, Miles, Raykova, Sahai, Tibouchi'15)
- Limitations of attacks
- Tentative conclusions

Constructing GES

The GGH Recipe:

- Start from some HE scheme
 - Publish a "defective secret key"
 - Called "zero-test parameter"
 - Can be used to identify encryptions of zero
 - Cannot be used for decryption
- Instantiated from NTRU in [GGH13], from approximate-GCD in [CLT13]
 - Another proposal in [GGH14] (but not today)

The [GGH13] Construction

- Works in polynomial rings $R = Z[X]/F_n(X)$
 - Also $R_q = R/qR = Z_q[X]/F(X)$
 - q is a "large" integer (e.g., $q \approx 2^{\sqrt{n}}$)
- Secrets are $z \in R_q$ and a "small" $g \in R_q$
- "Plaintext space" is $R_g = R/gR$
- Level-*i* encoding of $\alpha \in R_g$ is of form $\left[\frac{e}{z^i}\right]_a$
 - e is a "small" element in the g-coset of α

The [GGH13] Construction

- Secrets are $z \in_{\$} R_q$ and a "small" $g \in R$
- "Plaintext space" is $R_g = R/gR$
- Level-*i* encoding of $\alpha \in R_g$ is of form $\left[\frac{e}{z^i}\right]_a$

• e is a "small" element in the g-coset of α

• Can add, multriply encodings: $[enc_{i}(\alpha) + enc_{i}(\beta)]_{q} = enc_{i}(\alpha + \beta)$ $[enc_{i}(\alpha) \cdot enc_{j}(\beta)]_{q} = enc_{i+j}(\alpha\beta)$

• As long as e remains smaller than q

The [GGH13] Zero-Test

- Level-k encoding of zero is $u = \begin{bmatrix} \frac{r \cdot g}{z^k} \end{bmatrix}_{a}$
- Zero-test parameter is $p_{zt} = \left[\frac{hz^k}{g}\right]_{q}$
 - h is small-ish
- Multiplying we get $|[u \cdot p_{zt}]_q| = |\mathbf{r} \cdot \mathbf{h}| \ll q$ • Because both r, h are small
- If $u = enc_k (\alpha \neq 0)$ then $|[e \cdot p_{zt}]_q| \approx q$

The [CLT13] Construction

- Similar idea, but using CRT representation modulo a composite integer $N = p_1 \cdot ... \cdot p_t$
 - Assuming that factoring N is hard
 - The p_i 's are all the same size
- Secrets are p_i 's, $z \in S_i Z_N$, and $g_i \ll p_i$'s
- "Plaintext space" consists of *t*-vectors $(\alpha_1, \alpha_2, ..., \alpha_t) \in \mathbb{Z}_{g_1} \times \mathbb{Z}_{g_2} \times \cdots \times \mathbb{Z}_{g_t}$

The [CLT13] Construction

- Level-*i* encoding of vector $(\alpha_1 \dots \alpha_t)$ has the form $\begin{bmatrix} CRT(e_1,\dots,e_t)/z^i \end{bmatrix}_N$, where $e_i = r_i g_i + \alpha_i$
 - e_i 's are small element in the g_i -cosets of α_i 's

 $CRT(e_1, ..., e_t)$ is the element mod Nwith this CRT decomposition

The [CLT13] Construction

• Level-*i* encoding of vector $(\alpha_1 \dots \alpha_t)$ has the form $\begin{bmatrix} CRT(e_1,\dots,e_t) / \\ z^i \end{bmatrix}_N$, where $e_i = r_i g_i + \alpha_i$

• e_i 's are small element in the g_i -cosets of α_i 's

• Can add, multiply encodings $\left[\operatorname{enc}_{i}(\overrightarrow{\alpha}) + \operatorname{enc}_{i}(\overrightarrow{\beta})\right]_{q} = \operatorname{enc}_{i}(\overrightarrow{\alpha} + \overrightarrow{\beta})$ $\left[\operatorname{enc}_{i}(\overrightarrow{\alpha}) \cdot \operatorname{enc}_{j}(\overrightarrow{\beta})\right]_{q} = \operatorname{enc}_{i+j}(\overrightarrow{\alpha\beta})$

• As long as the e_i 's remain smaller than the p_i 's

The [CLT13] Zero-Test

• Let
$$p_i^* \stackrel{\text{\tiny def}}{=} \frac{N}{p_i}$$
, $i = 1, \dots, t$

• Observation: Fix any (e_1, \dots, e_t) . Then

 $\operatorname{CRT}(p_1^*e_1, \dots, p_t^*e_t) = \sum_i p_i^*e_i \mod N$

• The CLT zero-test parameter is $p_{zt} = \left[CRT(p_1^*h_1g_1^{-1}, ..., p_t^*h_tg_t^{-1}) \cdot z^k \right]_N$

• $|h_i| \ll p_i$

The [CLT13] Zero-Test

- $p_{zt} = [CRT(p_1^*h_1g_1^{-1}, ..., p_t^*h_tg_t^{-1}) \cdot z^k]_N$
- An encoding of (0, ..., 0) at level k has the form $\boldsymbol{u} = \left[\frac{(\operatorname{CRT}(r_1g_1, ..., r_tg_t))}{z^k} \right]_N$
 - So $\boldsymbol{u} \cdot \boldsymbol{p}_{zt} = CRT(\boldsymbol{p}_1^*\boldsymbol{h}_1\boldsymbol{r}_1, \dots, \boldsymbol{p}_t^*\boldsymbol{h}_t\boldsymbol{r}_t) = \sum_i \boldsymbol{p}_i^*\boldsymbol{h}_i\boldsymbol{r}_i$
 - $|h_i r_i| \ll p_i$, and therefore $|p_i^* h_i r_i| \ll N$
 - The sum is still much smaller than N
- If u is an encoding of non-zero at level k then $|u \cdot p_{zt}| \approx N$

Common properties of GGH, CLT

- Plaintext is a vector of elements
 - Size-1 vector In GGH
 - There is also a GGH variant with longer vectors
- An encoding u of $(\alpha_1, ..., \alpha_t)$ is "related" to a vector $(e_1, ..., e_t)$ with $e_i = r_i g_i + \alpha_i$
 - We will write $u \sim (e_1, \dots, e_t)$
 - Finding the e_i 's means breaking the scheme
- Add/mult act on the e_i 's <u>over the integers</u>
 - No modular reduction

Common properties of GGH, CLT

- If *u* is an encodings of zero at the top level
 - $\boldsymbol{u} \sim (\boldsymbol{r_1}\boldsymbol{g_1}, \dots, \boldsymbol{r_t}\boldsymbol{g_t})$
- then by zero-testing we get $ztst(u) = \sum_i \sigma_i r_i$
 - σ_i 's are system parameters, independent of u
 - $\sigma = h$ for GGH, $\sigma_i = p_i^* h_i$ for CLT
 - The computation is <u>over the integers</u>, without modular reduction
- (If *u* encodes non-zero then we do not get an equality over the integers)

Attacks

The [GGH13] "zeroizing" attack

- Say we have level-*i* GGH encoding of zero
 *u*₀ ~ (*r*₀*g*)
- ... and many other level-(k i) encodings
 - $u_j \sim (e_j)$
- Then $u_0 u_j \sim (e_j r_0 g)$, using zero-test we get $y_j = ztst(u_0 u_j) = hr_0 \cdot e_j$
 - We recover the e_j 's upto the factor $h' = hr_0$
 - Can compute GCDs to find, remove h'

The [GGH13] "zeroizing" attack

- This attack does not work for CLT
 - At least not "out of the box"
 - Also doesn't work on the "vectorised" GGH variant
- We have vectors $u_j \sim (e_{j,1}, \dots, e_{j,t})$
- Applying the same procedure gives the inner products $y_j = \sum_i r_{0,i} \sigma_i \cdot e_{j,i}$
 - Only one y_j per vector of $e_{j,i}$'s
 - Not enough to do GCD's

- A major "upgrade" of the [GGH13] attack
- When applicable, completely breaks CLT
 - i.e., you can factor N, learn all the plaintext
- Also works for the "vectorised" GGH
 - Not a complete break, but as severe as zeroizing attacks on the non-vectorised GGH

- Say we have many level-i zero-encodings
 - $\mathbf{u}_{j} \sim (a_{j,1}g_{1}, ..., a_{j,t}g_{t}), \ j = 1, 2, ...$
- ... two level-*i*' encodings
 - $\boldsymbol{v} \sim (\boldsymbol{b}_1, \dots, \boldsymbol{b}_t), \boldsymbol{v}' \sim (\boldsymbol{b}_1', \dots, \boldsymbol{b}_t')$
- ... and many encodings at level k i i'• $w_j \sim (c_{j,1}, ..., c_{j,t}), j = 1, 2,...$
- For each j_1, j_2 , we have a level-k encoding
 - $u_{j_1}v w_{j_2} \sim (a_{j_1,1}b_1c_{j_2,1} \cdot g_1, \dots, a_{j_1,t}b_tc_{j_2,t} \cdot g_t)$
 - Similarly for $u_{j_1}v' w_{j_2}$

- Zero-testing we get
 - $y_{j_1,j_2} = \mathbf{ztst}(\mathbf{u}_{j_1}\mathbf{v}\,\mathbf{w}_{j_2}) = \sum_i a_{j_1,i}b_ic_{j_2,i}\cdot \sigma_i$
 - Similarly for $y'_{j_1,j_2} = \operatorname{ztst}(u_{j_1}v'w_{j_2})$
- In vector form: $y_{j_1,j_2} = (a_{j_1,1}, \dots, a_{j_1,t}) \times \begin{pmatrix} b_1 \sigma_1 & 0 \\ 0 & \ddots & b_t \sigma_t \end{pmatrix} \times \begin{pmatrix} c_{j_2,1} \\ \vdots \\ c_{j_2,t} \end{pmatrix}$

- Zero-testing we get
 - $y_{j_1,j_2} = \mathbf{ztst}(\mathbf{u}_{j_1}\mathbf{v}\,\mathbf{w}_{j_2}) = \sum_i a_{j_1,i}b_ic_{j_2,i}\cdot \sigma_i$
 - Similarly for $y'_{j_1,j_2} = \operatorname{ztst}(u_{j_1}v'w_{j_2})$
- In vector form: $y_{j_1,j_2} =$

- Putting the y_{j_1,j_2} 's in a $t \times t$ matrix we get $Y = [y_{j_1,j_2}] = U \times V \times W$
 - *U* has the $\overrightarrow{u_{j_1}}$'s as rows
 - V is as before

Whp U,V,W are invertible

- W has the $\overrightarrow{w_{j_2}}$'s as columns
- Similarly $Y' = [y'_{j_1,j_2}] = U \times V' \times W$
- We know Y, Y' but not U, V, V', W
- Importantly, equalities hold over the integers

• Once we have Y, Y' we compute $Z = Y^{-1} \times Y' = (UVW)^{-1} \times (UV'W)$ $= W^{-1} \times (V^{-1} \times V') \times W$

- Recall that $V^{-1} \times V' = \begin{pmatrix} b_1'/b_1 & 0 \\ 0 & \ddots \\ b_t'/b_t \end{pmatrix}$
 - Eigenvalues of $V^{-1} \times V'$ are b'_i/b_i , i = 1, ..., t
 - Same for Z (since $V^{-1} \times V', Z$ are similar)

- After computing Z, compute its eigenvalues $\{b'_i/b_i : i = 1, ..., t\}$
 - We get b_i, b'_i up to the factor $GCD(b_i, b'_i)$
- Often knowing the ratios b'_i/b_i is enough to violate hardness assumption
- For CLT, can use b'_i/b_i to factor N:

- For CLT, can use b'_i/b_i to factor N:
 - Recall $\boldsymbol{v} = \left[CRT(b_1, \dots, b_i, \dots, b_t) / z^{i'} \right]_N$ $\boldsymbol{v}' = \left[CRT(b_1', \dots, b_i', \dots, b_t') / z^{i'} \right]_N$
 - Express b'_i/b_i as a simple fraction b'_i/b_i = d'_i/d_i
 d_i, d'_i are co-prime
 - $x_i = [d_i v' d'_i v]_N$ has 0 CRT component for p_i
 - Whp the other CRT components are not zero
 - → Recover $p_i = GCD(N, x_i)$

Extending the Attack

- Easy to see that the same attack still works as long as u_{j1} · v · w_{j2} and u_{j1} · v' · w_{j2} are encoding of zeros for every j₁, j₂
 - Don't need the u_{i_1} 's themselves to encode zero
 - e.g. $\mathbf{u}_{j} \sim (a_{j,1}g_{1}, a_{j,2}, a_{j,3}),$ $v \sim (b_{1}, b_{2}g_{2}, b_{3}) \text{ and } v' \sim (b'_{1}, b'_{2}g_{2}, b'_{3}),$ $w_{j} \sim (c_{j,1}, c_{j,2}, c_{j,3}g_{3})$

Attack Consequences

Some Schemes are Broken

- For example, schemes that publish low-level encoding of zeros are likely broken
 - Publishing zero-encoding would be useful
 - E.g., to re-randomize encodings by adding a subset-sum of these zero encodings
- Even some obfuscation schemes
 - E.g., the "simple IO scheme" from [Zim14] (this requires further extending the attacks)

Many Assumptions are Broken

- "Source Group" assumptions:
 - Given level-1 encodings of elements $\alpha_1, \alpha_2, ...,$ cannot tell if $expr(\vec{\alpha}) = 0$
 - expr(*) has degree $\leq k 3$ (say)
- Generally broken, use the attack with
 - $\mathbf{u}_j \sim expr(\vec{\alpha}) \cdot \alpha_j$
 - $\mathbf{v} \sim \alpha_1$, $\mathbf{v}' \sim \alpha_2$
 - $w_j \sim \alpha_j$

Many Assumptions are Broken

- Subgroup-Membership assumptions:
 - Input: encoding of (α, \$, ..., \$, 0, ..., 0)
 - And some other encodings too
 - Goal: distinguish $\alpha = 0$ from $\alpha =$
 - Would be easy if we could get an encoding of (*, 0, ..., 0, φ, ..., φ)
 - Assumption: it is hard otherwise
- Broken if we can get encoding of the form
 (0, 0, ..., 0, φ, ..., φ)

Many Assumptions are Broken

 Currently we have no candidate GES with hard source-group or subgroup-membership problems

A Suggested Fix

• Instead of $u_{j_1} v w_{j_2} \sim \vec{0}$, maybe we can use $\delta = u_{j_1} v w_{j_2} - \hat{u}_{j_1} \hat{v} \hat{w}_{j_2} \sim \vec{0}$

• For encodings u_j , v, w and \hat{u}_j , \hat{v} , \hat{w}_j

- This was suggested as a fix to the attacks
 - It is always possible to convert $u_{j_1}v w_{j_2} \sim \vec{0}$ to get the weaker condition [BWZ14]
 - Similar fix mentioned in [GGHZ14]
- But the attack can be extended to defeat it

Further Extending the Attack

 We mount the same attack, using vectors of double the length

 $ztst(\delta) = \left(\sum_{i} a_{j_{1},i} b_{i} c_{j_{2},i} \cdot \sigma_{i} - \sum_{i} \widehat{a}_{j_{1},i} \widehat{b}_{i} \widehat{c}_{j_{2},i} \cdot \sigma_{i}\right)/g$

• Similar to before, but now we have 1/g factor

•
$$g = CRT(g_1, \dots, g_t)$$
 in CLT

- Equality holds over the integers/rationals!
- So $Y = U \times V \times W \cdot \frac{1}{g}$, and the same for Y'
- When setting $Z = Y^{-1} \times Y'$, the 1/g falls off

Limitations of the Attacks

- Rely on partitioning $y_{j_1,j_2} = u_{j_1} \cdot v \cdot w_{j_2} \sim \vec{0}$
 - We can vary u_{j_1} without affecting v, w_{j_2}
 - Similarly can vary w_{j_2} without affecting v, u_{j_1}
- Many applications do not give such nicely partitioned encoding of zeros
 - E.g., [GGHRSW13] use Barrington BPs
 - You get encoding of zeros in the form $\vec{u} \times \prod_i V_i \times \vec{w}$
 - But changing any bit in the input affects many V_i's
 - Some applications have explicit binding factors

Final Musings About Security

- Current Graded Encoding Schemes "hide" encoded values behind mod-q relations
 - Solving mod-q relations directly involves solving lattice problems (since we need small solutions)
- But zero-test parameter lets you "strip" the mod-q part, get relations over the integers
 - No more lattice problems, any solution will do
 - Can only get these relations when you have an encoding of zero

Final Musings About Security

- Security relies on the adversary's inability to solve these relations
 - By the time you get a zero, the relations are too complicated to solve
- Security feels more like HFE than FHE
 - HFE: Hidden Field Equations
 - FHE: Fully-Homomorphic Encryption
- It's going to be a bumpy ride..