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Graded Encoding Schemes (GES) 
Very powerful crypto tools 

 Resembles “Cryptographic Multilinear Maps” 

Enable computation on “hidden data” 

 Similar to homomorphic encryption (HE) 

 

But HE is too “all or nothing” 

 No key: result is meaningless 

 Has key: can read result and intermediate values 

  



Graded Encoding Schemes (GES) 

Leak “some information” about result 

 Can tell if results equals zero 

 Not decrypt result or intermediate values 

This partial leakage can do great things 

 Multipartite non-interactive key-exchange, 

Witness-encryption, Attribute-based encryption, 

Cryptographic code obfuscation, Functional 

encryption, … 

But implementing “limited leakage” is messy 



Plan for this Talk 
Background 

 Some details of [GGH13], [CLT13] 

 The [GGH13] “zeroizing” attack 

New attacks (Cheon,Han,Lee,Ryu,Stehle’14) 

 Extensions of the attacks (Coron, Gentry, H, Lepoint, 

Maji, Miles, Raykova, Sahai, Tibouchi’15) 

 Limitations of attacks 

Tentative conclusions 



Constructing GES 
The GGH Recipe: 

Start from some HE scheme 

 Publish a “defective secret key” 

 Called “zero-test parameter” 

 Can be used to identify encryptions of zero 

 Cannot be used for decryption 

 Instantiated from NTRU in [GGH13], 

from approximate-GCD in [CLT13] 

 Another proposal in [GGH14] (but not today) 



The [GGH13] Construction 
Works in polynomial rings 𝑅 = 𝑍 𝑋 /𝐹𝑛(𝑋) 

 Also 𝑅𝑞 = 𝑅/𝑞𝑅 = 𝑍𝑞 𝑋 /𝐹(𝑋) 

 𝑞 is a “large” integer (e.g., 𝑞 ≈ 2 𝑛) 

Secrets are 𝐳 ∈$ 𝑹𝒒 and a “small” 𝒈 ∈ 𝐑 

 “Plaintext space” is 𝑹𝒈 = 𝐑/𝒈𝐑 

Level-𝑖 encoding of 𝛂 ∈ 𝑹𝒈 is of form 𝒆
𝒛𝒊 

𝒒
 

 𝑒 is a “small” element in the 𝑔-coset of 𝛼 



The [GGH13] Construction 
Secrets are 𝒛 ∈$ 𝑹𝒒 and a “small” 𝒈 ∈ 𝑹 

 “Plaintext space” is 𝑹𝒈 = 𝑹/𝒈𝑹 

Level-𝑖 encoding of 𝜶 ∈ 𝑹𝒈 is of form 𝒆
𝒛𝒊 

𝒒
 

 𝑒 is a “small” element in the 𝑔-coset of 𝛼 

Can add, multriply encodings: 

𝐞𝐧𝐜𝐢 𝛂 + 𝐞𝐧𝐜𝐢 𝛃 𝐪 = 𝐞𝐧𝐜𝐢(𝛂 + 𝛃) 

𝐞𝐧𝐜𝐢 𝛂 ⋅ 𝐞𝐧𝐜𝐣 𝛃 𝐪
= 𝐞𝐧𝐜𝐢+𝐣(𝛂𝛃) 

 As long as 𝑒 remains smaller than 𝑞 



The [GGH13] Zero-Test 

Level-k encoding of zero is 𝒖 =
𝒓⋅𝒈

𝒛𝒌 𝒒
 

Zero-test parameter is 𝒑𝒛𝒕 =
𝐡𝒛𝒌

𝒈 
𝒒
 

 ℎ is small-ish 

Multiplying we get 𝒖 ⋅ 𝒑𝒛𝒕 𝒒 = 𝐫 ⋅ 𝐡 ≪ 𝒒 

 Because both 𝑟, ℎ are small 

 If 𝑢 = 𝑒𝑛𝑐𝑘 𝛼 ≠ 0  then 𝑒 ⋅ 𝑝𝑧𝑡 𝑞 ≈ 𝑞 



The [CLT13] Construction 
Similar idea, but using CRT representation 

modulo a composite integer 𝑵 = 𝒑𝟏 ⋅ … ⋅ 𝒑𝒕 

 Assuming that factoring 𝑁 is hard 

 The 𝑝𝑖’s are all the same size 
 

Secrets are 𝒑𝒊’s, 𝐳 ∈$ 𝒁𝑵, and 𝒈𝒊 ≪ 𝒑𝒊’s 

 “Plaintext space” consists of 𝑡-vectors 

𝜶𝟏, 𝜶𝟐, … , 𝜶𝒕 ∈ 𝒁𝒈𝟏 × 𝒁𝒈𝟐 ×⋯× 𝒁𝒈𝒕 



𝐂𝐑𝐓(𝒆𝟏, … , 𝒆𝒕) is  the 
element  mod 𝑵 
with  this  CRT 
decomposition 

The [CLT13] Construction 
Level-𝑖 encoding of vector 𝛼1…𝛼𝑡  has the 

form 
𝐂𝐑𝐓(𝒆𝟏,…,𝒆𝒕)

𝒛𝒊
 

𝐍
, where 𝒆𝒊 = 𝒓𝒊𝒈𝒊 + 𝜶𝒊 

 𝑒𝑖‘s are small element in the 𝑔𝑖-cosets of 𝛼𝑖’s 



The [CLT13] Construction 
Level-𝑖 encoding of vector 𝛼1…𝛼𝑡  has the 

form 
𝐂𝐑𝐓(𝒆𝟏,…,𝒆𝒕)

𝒛𝒊
 

𝐍
, where 𝒆𝒊 = 𝒓𝒊𝒈𝒊 + 𝜶𝒊 

 𝑒𝑖‘s are small element in the 𝑔𝑖-cosets of 𝛼𝑖’s 
 

Can add, multiply encodings 

𝐞𝐧𝒄𝒊 𝜶 + 𝐞𝐧𝒄𝒊 𝜷 𝒒
= 𝐞𝐧𝒄𝒊(𝛂 + 𝜷) 

𝐞𝐧𝒄𝒊 𝜶 ⋅ 𝐞𝐧𝒄𝒋 𝜷 𝒒
= 𝐞𝐧𝒄𝐢+𝒋(𝜶𝜷) 

 As long as the 𝑒𝑖’s remain smaller than the 𝑝𝑖’s  



The [CLT13] Zero-Test 

Let 𝒑𝒊
∗ ≝

𝑵

𝒑𝒊
, 𝑖 = 1,… , 𝑡 

 

Observation: Fix any 𝑒1, … , 𝑒𝑡 . Then 
 

𝐂𝐑𝐓 𝒑𝟏
∗𝒆𝟏, … , 𝒑𝒕

∗𝒆𝒕 = ∑𝒊𝒑𝒊
∗𝒆𝒊 𝒎𝒐𝒅 𝑵 

 

The CLT zero-test parameter is 

𝒑𝒛𝒕 = 𝑪𝑹𝑻 𝒑𝟏
∗𝒉𝟏𝒈𝟏

−𝟏, … , 𝒑𝒕
∗𝒉𝒕𝒈𝒕

−𝟏 ⋅ 𝒛𝒌
𝑵

 

 ℎ𝑖 ≪ 𝑝𝑖 



The [CLT13] Zero-Test 
𝒑𝒛𝒕 = 𝑪𝑹𝑻 𝒑𝟏

∗𝒉𝟏𝒈𝟏
−𝟏, … , 𝒑𝒕

∗𝒉𝒕𝒈𝒕
−𝟏 ⋅ 𝒛𝒌

𝑵
 

An encoding of (0, … , 0) at level 𝑘 has the 

form 𝒖 = 𝐂𝐑𝐓 𝐫𝟏𝒈𝟏,…,𝒓𝒕𝒈𝒕
𝒛𝒌
 

𝑵
 

 So 𝒖 ⋅ 𝒑𝒛𝒕 = 𝑪𝑹𝑻 𝒑𝟏
∗𝒉𝟏𝒓𝟏, … , 𝒑𝒕

∗𝒉𝒕𝒓𝒕 = ∑𝒊 𝒑𝒊
∗𝒉𝒊𝒓𝒊 

 |ℎ𝑖𝑟𝑖| ≪ 𝑝𝑖, and therefore |𝑝𝑖
∗ℎ𝑖𝑟𝑖| ≪ 𝑁 

 The sum is still much smaller than 𝑁 

 If 𝑢 is an encoding of non-zero at level k 

then 𝑢 ⋅ 𝑝𝑧𝑡 ≈ 𝑁 



Common properties of GGH, CLT 

Plaintext is a vector of elements 

 Size-1 vector In GGH 

 There is also a GGH variant with longer vectors 

An encoding 𝑢 of (𝛼1, … , 𝛼𝑡) is “related” to a 

vector (𝑒1, … , 𝑒𝑡) with 𝑒𝑖 = 𝑟𝑖𝑔𝑖 + 𝛼𝑖 

 We will write 𝒖 ∼ (𝒆𝟏, … , 𝒆𝒕) 

 Finding the 𝑒𝑖’s means breaking the scheme 

Add/mult act on the 𝑒𝑖 ’s over the integers 

 No modular  reduction 



Common properties of GGH, CLT 

 If 𝑢 is an encodings of zero at the top level 

 𝒖 ∼ (𝒓𝟏𝒈𝟏, … , 𝒓𝒕𝒈𝒕)  

 then by zero-testing we get 𝐳𝐭𝐬𝐭(𝒖) = ∑𝒊 𝝈𝒊𝒓𝒊 

 𝝈𝒊’s are system parameters, independent of 𝒖 

 𝝈 = 𝒉 for GGH, 𝝈𝒊 = 𝒑𝒊
∗𝒉𝒊 for CLT 

 The computation is over the integers, without 

modular reduction 

(If 𝑢 encodes non-zero then we do not get an 

equality over the integers) 





The [GGH13] “zeroizing” attack 
Say we have level-𝑖 GGH encoding of zero 

 𝒖𝟎 ∼ (𝒓𝟎𝒈) 

… and many other level-(𝑘 − 𝑖) encodings 

 𝒖𝒋 ∼ (𝒆𝒋) 

Then 𝑢0𝑢𝑗 ∼ 𝑒𝑗𝑟0𝑔 , using zero-test we get 

𝒚𝒋 = 𝒛𝒕𝒔𝒕(𝒖𝟎𝒖𝒋) = 𝒉𝒓𝟎 ⋅ 𝒆𝒋 

 We recover the 𝑒𝑗 ’s upto the factor ℎ′ = ℎ𝑟0 

 Can compute GCDs to find, remove ℎ′ 



The [GGH13] “zeroizing” attack 
This attack does not work for CLT 

 At least not “out of the box” 

 Also doesn’t work on the “vectorised” GGH variant 

We have vectors 𝒖𝒋 ∼ (𝒆𝒋,𝟏, … , 𝒆𝒋,𝒕) 

Applying the same procedure gives the inner 

products 𝒚𝒋 = ∑𝒊 𝒓𝟎,𝒊𝝈𝒊 ⋅ 𝒆𝒋,𝒊 

 Only one 𝑦𝑗 per vector of 𝑒𝑗,𝑖’s 

 Not enough to do GCD’s 



The Cheon et al. Attack [CHLRS14] 

A major “upgrade” of the [GGH13] attack 

When applicable, completely breaks CLT 

 i.e., you can factor 𝑁, learn all the plaintext 

Also works for the “vectorised” GGH 

 Not a complete break, but as severe as 

zeroizing attacks on the non-vectorised GGH 



The Cheon et al. Attack [CHLRS14] 
Say we have many level-𝑖 zero-encodings 

 𝐮𝐣 ∼ 𝒂𝐣,𝟏𝐠𝟏, … , 𝒂𝐣,𝐭𝐠𝐭 , 𝐣 = 𝟏, 𝟐, … 

… two level-𝑖′ encodings  
 𝒗 ∼ 𝒃𝟏, …  , 𝒃𝐭 , 𝒗′ ∼ 𝒃𝟏

′ , …  , 𝒃𝒕
′  

… and many encodings at level 𝑘 − 𝑖 − 𝑖′ 

𝐰𝐣 ∼ 𝒄𝐣,𝟏, …  , 𝒄𝐣,𝒕 , 𝐣 = 𝟏, 𝟐,… 

For each 𝑗1, 𝑗2, we have a level-𝑘 encoding 

 𝑢𝑗1𝑣 𝑤𝑗2 ∼ (𝑎𝑗1,1𝑏1𝑐𝑗2,1 ⋅ 𝑔1, … , 𝑎𝑗1,𝑡𝑏𝑡𝑐𝑗2,𝑡 ⋅ 𝑔𝑡) 

 Similarly for 𝑢𝑗1𝑣
′ 𝑤𝑗2 



The Cheon et al. Attack [CHLRS14] 

Zero-testing we get 

 𝒚𝒋𝟏,𝒋𝟐 = 𝐳𝐭𝐬𝐭 𝐮𝐣𝟏𝐯 𝐰𝐣𝟐 = ∑𝐢 𝒂𝐣𝟏,𝐢𝒃𝐢𝒄𝐣𝟐,𝐢 ⋅ 𝛔𝐢 

 Similarly for 𝑦𝑗1,𝑗2
′ = ztst 𝑢𝑗1𝑣

′ 𝑤𝑗2  

 In vector form: 𝑦𝑗1,𝑗2 = 

𝑎𝑗1,1, … , 𝑎𝑗1,𝑡 ×
𝑏1𝜎1   
 ⋱  
  𝑏𝑡𝜎𝑡

×

𝑐𝑗2,1
⋮

𝑐𝑗2,𝑡
 

0 

0 



The Cheon et al. Attack [CHLRS14] 

Zero-testing we get 

 𝒚𝒋𝟏,𝒋𝟐 = 𝐳𝐭𝐬𝐭 𝐮𝐣𝟏𝐯 𝐰𝐣𝟐 = ∑𝐢 𝒂𝐣𝟏,𝐢𝒃𝐢𝒄𝐣𝟐,𝐢 ⋅ 𝛔𝐢 

 Similarly for 𝑦𝑗1,𝑗2
′ = ztst 𝑢𝑗1𝑣

′ 𝑤𝑗2  

 In vector form: 𝑦𝑗1,𝑗2 = 

𝑎𝑗1,1, … , 𝑎𝑗1,𝑡 ×
𝑏1𝜎1   
 ⋱  
  𝑏𝑡𝜎𝑡

×

𝑐𝑗2,1
⋮

𝑐𝑗2,𝑡
 

𝑢𝑗1 𝑤𝑗2  𝑽 

0 

0 



The Cheon et al. Attack [CHLRS14] 

Putting the 𝑦𝑗1,𝑗2’s in a 𝑡 × 𝑡 matrix we get 

𝒀 = [𝒚𝒋𝟏,𝒋𝟐] = 𝑼 × 𝑽 ×𝑾 

 𝑈 has the 𝑢𝑗1 ’s as rows 

 𝑉 is as before 

𝑊 has the 𝑤𝑗2 ’s as columns 

Similarly 𝒀′ = [𝒚𝒋𝟏,𝒋𝟐
′ ] = 𝑼 × 𝑽′ ×𝑾 

We know 𝑌, 𝑌′ but not 𝑈, 𝑉, 𝑉′,𝑊 

 Importantly, equalities hold over the integers 

Whp U,V,W 
are invertible 



The Cheon et al. Attack [CHLRS14] 

Once we have 𝑌, 𝑌′ we compute 

𝒁 = 𝒀−𝟏 × 𝒀′ = 𝑼𝑽𝑾 −𝟏 × 𝑼𝑽′𝑾  
                          = 𝑾−𝟏 × 𝑽−𝟏 × 𝑽′ ×𝑾 

Recall that 𝑉−1 × 𝑉′ =
𝑏1
′/𝑏1   
 ⋱  
  𝑏𝑡

′/𝑏𝑡

 

 Eigenvalues of 𝑉−1 × 𝑉′ are 𝒃𝒊
′/𝒃𝒊, 𝑖 = 1, … , 𝑡 

 Same for 𝑍 (since 𝑉−1 × 𝑉′, 𝑍 are similar) 

0 

0 



The Cheon et al. Attack [CHLRS14] 

After computing 𝑍, compute its eigenvalues 

{𝑏𝑖
′/𝑏𝑖 ∶ 𝑖 = 1, … , 𝑡} 

 We get 𝑏𝑖 , 𝑏𝑖
′ upto the factor 𝐺𝐶𝐷(𝑏𝑖 , 𝑏𝑖

′) 
 

Often knowing the ratios 𝑏𝑖
′/𝑏𝑖 is enough to 

violate hardness assumption 
 

For CLT, can use 𝑏𝑖
′/𝑏𝑖 to factor 𝑁: 

 



The Cheon et al. Attack [CHLRS14] 

For CLT, can use 𝑏𝑖
′/𝑏𝑖 to factor 𝑁: 

 Recall 𝒗 = 𝑪𝑹𝑻 𝒃𝟏, … , 𝒃𝒊, … , 𝒃𝒕 𝒛𝒊
′

 
𝑵

 

     𝒗′ = 𝑪𝑹𝑻 𝒃𝟏
′ , … , 𝒃𝒊

′, … , 𝒃𝒕
′ 𝒛𝒊

′
 

𝑵
 

 Express 𝑏𝑖
′/𝑏𝑖 as a simple fraction 𝑏𝑖

′/𝑏𝑖 = 𝑑𝑖
′/𝑑𝑖 

 𝑑𝑖 , 𝑑𝑖
′ are co-prime 

 𝒙𝒊 = 𝒅𝒊𝒗
′ − 𝒅𝒊

′𝒗 𝑵 has 0 CRT component for 𝑝𝑖 

 Whp the other CRT components are not zero 

Recover 𝑝𝑖 = 𝐺𝐶𝐷(𝑁, 𝑥𝑖) 



Extending the Attack 
Easy to see that the same attack still works 

as long as 𝒖𝒋𝟏 ⋅ 𝒗 ⋅ 𝒘𝒋𝟐 and 𝒖𝒋𝟏 ⋅ 𝒗
′ ⋅ 𝒘𝒋𝟐  are 

encoding of zeros for every 𝑗1, 𝑗2 

 Don’t need the 𝑢𝑗1 ’s themselves to encode zero 

 e.g.  

𝐮𝐣 ∼ 𝒂𝐣,𝟏𝒈𝟏, 𝒂𝒋,𝟐, 𝒂𝒋,𝟑 , 

𝒗 ∼    𝒃𝟏,   𝒃𝟐𝒈𝟐, 𝒃𝟑  and 𝒗′ ∼ 𝒃𝟏
′ ,  𝒃𝟐

′ 𝒈𝟐, 𝒃𝟑
′ , 

𝒘𝒋 ∼   (𝒄𝒋,𝟏,  𝒄𝒋,𝟐 , 𝒄𝒋,𝟑𝒈𝟑)  





Some Schemes are Broken 
For example, schemes that publish low-level 

encoding of zeros are likely broken 

 Publishing zero-encoding would be useful 

 E.g., to re-randomize encodings by adding a 

subset-sum of these zero encodings 

Even some obfuscation schemes 

 E.g., the “simple IO scheme” from [Zim14]  

(this requires further extending the attacks) 



Many Assumptions are Broken 
 “Source Group” assumptions: 

 Given level-1 encodings of elements 𝛂𝟏, 𝛂𝟐, …, 

cannot tell if 𝐞𝐱𝐩𝐫 𝛂 = 𝟎 

 𝑒𝑥𝑝𝑟 ∗  has degree ≤ 𝑘 − 3 (say) 

Generally broken, use the attack with 
 𝐮𝐣 ∼ 𝐞𝐱𝐩𝐫 𝛂 ⋅ 𝛂𝐣 

 𝐯 ∼ 𝜶𝟏, 𝐯
′ ∼ 𝛂𝟐 

𝐰𝐣 ∼ 𝛂𝐣 



Many Assumptions are Broken 
Subgroup-Membership assumptions: 

 Input: encoding of (𝛂, $, … , $, 𝟎, … , 𝟎) 
 And some other encodings too 

 Goal: distinguish 𝛂 = 𝟎 from 𝛂 = $ 

 Would be easy if we could get an encoding of 

(∗, 𝟎, … , 𝟎, 𝝓,… ,𝝓) 

 Assumption: it is hard otherwise 

Broken if we can get encoding of the form 

 (𝟎, 𝟎, … , 𝟎,𝝓,… ,𝝓) 

 



Many Assumptions are Broken 
Currently we have no candidate GES with 

hard source-group or subgroup-membership 

problems 



A Suggested Fix 

 Instead of 𝑢𝑗1𝑣 𝑤𝑗2 ∼ 0, maybe we can use 

𝜹 = 𝒖𝒋𝟏𝒗 𝒘𝒋𝟐 − 𝒖 𝒋𝟏𝒗 𝒘 𝒋𝟐 ∼ 𝟎 

 For encodings 𝑢𝑗 , 𝑣, 𝑤 and 𝑢𝑗 , 𝑣 , 𝑤𝑗  

This was suggested as a fix to the attacks 

 It is always possible to convert 𝒖𝒋𝟏𝒗 𝒘𝒋𝟐 ∼ 𝟎  

to get the weaker condition [BWZ14] 

 Similar fix mentioned in [GGHZ14] 

But the attack can be extended to defeat it 



Further Extending the Attack 
We mount the same attack, using vectors of 

double the length 
𝒛𝒕𝒔𝒕 𝜹 = ∑𝒊 𝒂𝐣𝟏,𝐢𝒃𝐢𝒄𝐣𝟐,𝐢 ⋅ 𝛔𝐢 − ∑𝒊 𝒂 𝐣𝟏,𝐢𝒃

 
𝐢𝒄 𝐣𝟐,𝐢 ⋅ 𝛔𝐢 /𝒈 

 Similar to before, but now we have 1/𝑔 factor 

 𝑔 = 𝐶𝑅𝑇(𝑔1, … , 𝑔𝑡) in CLT 

Equality holds over the integers/rationals! 

So 𝒀 = 𝑼 × 𝑽 ×𝑾 ⋅ 𝟏 𝒈 , and the same for 𝒀′ 

When setting 𝑍 = 𝑌−1 × 𝑌′, the 1 𝑔  falls off 



Limitations of the Attacks 

Rely on partitioning 𝑦𝑗1,𝑗2 = 𝑢𝑗1 ⋅ 𝑣 ⋅ 𝑤𝑗2 ∼ 0 

 We can vary 𝑢𝑗1without affecting 𝑣, 𝑤𝑗2 

 Similarly can vary 𝑤𝑗2 without affecting 𝑣, 𝑢𝑗1 

Many applications do not give such nicely 

partitioned encoding of zeros 

 E.g., [GGHRSW13] use Barrington BPs 

 You get encoding of zeros in the form 𝑢 ×  𝑉𝑖𝑖 × 𝑤 

 But changing any bit in the input affects many 𝑉𝑖 ’s 

 Some applications have explicit binding factors 

 



Final Musings About Security 
Current Graded Encoding Schemes “hide” 

encoded values behind mod-𝑞 relations 

 Solving mod-𝑞 relations directly involves solving 

lattice problems (since we need small solutions) 

But zero-test parameter lets you “strip” the 

mod-q part, get relations over the integers 

 No more lattice problems, any solution will do 

 Can only get these relations when you have an 

encoding of zero 



Final Musings About Security 
Security relies on the adversary’s inability to 

solve these relations 

 By the time you get a zero, the relations are too 

complicated to solve 

Security feels more like HFE than FHE 

 HFE: Hidden Field Equations 

 FHE: Fully-Homomorphic Encryption 

 It’s going to be a bumpy ride.. 


