Fully Homomorphic Encryption over the Integers

Many slides borrowed from Craig

Marten van Dijk¹, Craig Gentry², Shai Halevi², Vinod Vaikuntanathan²

1 – MIT, 2 – IBM Research

Computing on Encrypted Data

Storing my files on the cloud

- Encrypt them to protect my information
- Search through them for emails with "homomorphic" in the subject line
 - Cloud should return only these (encrypted) messages, w/o knowing the key
- Private Internet search
 - Encrypt my query, send to Google
 - I still want to get the same results
 - Results would be encrypted too

■ E.g., RSA: c←m^e mod N, m←c^d mod N
(N,e) public key, d secret key

Can we do it?

□ As described so far, sure..

- $(\Pi, c_1, ..., c_n) = c^* \leftarrow Eval_{pk}(\Pi, c_1, ..., c_n)$
- Dec_{sk}(c*) decrypts individual c_i's, apply Π

(the workers do nothing, Alice assembles the jewelry by herself)

Of course, this is cheating:

- We want c* to remain small²
 - independent of the size of Π
 - Compact" homomorphic encryption

We may also want II to remain secret

Can be done with "generic tools" (Yao's garbled circuits)

This is the main challenge

Outline

- 1. A homomorphic symmetric encryption
- 2. Turning it into public-key encryption
 - Result is "almost bootstrappable"
- 3. Making it bootstrappable
 - Similar to Gentry'09

Time permitting

- 4. Security
- 5. Gentry's bootstrapping technique
 - Not today

Why is this homomorphic?

$$\Box c_1 = q_1 p + 2r_1 + m_1, c_2 = q_2 p + 2r_2 + m_2$$

□ $C_1 + C_2 = (q_1 + q_2)p + \frac{2(r_1 + r_2) + (m_1 + m_2)}{2(r_1 + r_2) + (m_1 + m_2)}$ ■ $2(r_1 + r_2) + (m_1 + m_2)$ still much smaller than p → $c_1 + c_2 \mod p = 2(r_1 + r_2) + (m_1 + m_2)$

□ $c_1 \ge c_2 = (c_1q_2+q_1c_2-q_1q_2)p$ + $\frac{2(2r_1r_2+r_1m_2+m_1r_2) + m_1m_2}{2(2r_1r_2+...)}$ ■ $2(2r_1r_2+...)$ still much smaller than p → $c_1 \ge c_1 \ge c_2 \mod p = 2(2r_1r_2+...) + m_1m_2$

Homomorphic Public-Key Encryption Secret key is an odd p as before Public key is many "encryptions of 0" • $x_i = [q_i p + 2r_i]_{x_0}$ for i = 1, 2, ..., n $\Box Enc_{pk}(m) = [subset-sum(x_i's)+m+2r]_{x0}$ $\Box \operatorname{Dec}_{sk}(c) = (c \mod p) \mod 2$ Eval as before

Keeping it small

- The ciphertext's bit-length doubles with every multiplication
 - The original ciphertext already has n⁶ bits
 - After ~log n multiplications we get ~n⁷ bits
- We can keep the bit-length at n⁶ by adding more "encryption of zero"
 - $|y_1| = n^6 + 1, |y_2| = n^6 + 2, ..., |y_m| = 2n^6$
 - Whenever the ciphertext length grows, set c' = c mod y_m mod y_{m-1} ... mod y₁

Security The approximate-GCD problem: Input: integers $x_1, x_2, x_3, ...$ > Chosen as $x_i = q_i p + r_i$ for a secret odd p > $p \in {}_{\$}[0,P], q_{i} \in {}_{\$}[0,Q], r_{i} \in {}_{\$}[0,R]$ (with $R \ll P \ll Q$) Task: find p \Box Thm: If we can distinguish Enc(0)/Enc(1) for some p, then we can find that p Roughly: the LSB of r_i is a "hard core bit" → Scheme is secure if approx-GCD is hard Is approx-GCD really a hard problem?

Hardness of Approximate-GCD

- Several lattice-based approaches for solving approximate-GCD
 - Related to Simultaneous Diophantine Approximation (SDA)
 - Studied in [Hawgrave-Graham01]
 - We considered some extensions of his attacks
- □ All run out of steam when $|q_i| > |p|^2$
 - In our case $|p| \sim n^2$, $|q_i| \sim n^5 \gg |p|^2$

Relation to SDA (cont.)

When will Lagarias'es algorithm succeed?

- <q₀,q₁,...,q_t>·L should be shortest in lattice
 - > In particular shorter than $\sim det(L)^{1/t+1}$
- This only holds for t > log Q/log P Minkowski bound
- The dimension of the lattice is t+1
- Quality of lattice-reduction deteriorates exponentially with t
- When log Q > (log P)² (so t>log P), LLL-type reduction isn't good enough anymore

Conclusions Fully Homomorphic Encryption is a very powerful tool Gentry09 gives first feasibility result Showing that it can be done "in principle" We describe a "conceptually simpler" scheme, using only modular arithmetic

What about efficiency?

Computation, ciphertext-expansion are polynomial, but a rather large one...

Thank you