Fully Homomorphic Encryption over the Integers

Many slides borrowed
from Craig

Marten van Dijk ${ }^{1}$, Craig Gentry², Shai Halevi ${ }^{2}$, Vinod Vaikuntanathan ${ }^{2}$

1 - MIT, 2 - IBM Research

Computing on Encrypted Data

\square Storing my files on the cloud

- Encrypt them to protect my information
- Search through them for emails with "homomorphic" in the subject line
> Cloud should return only these (encrypted) messages, w/o knowing the key
\square Private Internet search
- Encrypt my query, send to Google
- I still want to get the same results
$>$ Results would be encrypted too

Public-key Encryption

\square Three procedures: KeyGen, Enc, Dec

- (sk,pk) \leftarrow KeyGen(\$)
$>$ Generate random public/secret key-pair
- c $\leftarrow E \operatorname{Enc}_{\mathrm{pk}}(\mathrm{m})$
$>$ Encrypt a message with the public key
- $\mathrm{m} \leftarrow \operatorname{Dec}_{\mathrm{sk}}(\mathrm{c})$
> Decrypt a ciphertext with the secret key
\square E.g., RSA: $c \leftarrow m^{e} \bmod N, m \leftarrow c^{d} \bmod N$ - (N, e) public key, d secret key

Homomorphic Public-key Encryption

\square Also another procedure: Eval

- $c^{*} \leftarrow E \operatorname{Eval}_{p k}\left(\Pi, c_{1}, \ldots, c_{n}\right)$

Encryption of output value $\mathrm{m}^{*}=\Pi\left(\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right)$

- П a Boolean circuit with ADD, MULT mod 2

An Analogy: Alice's Jewelry Store

\square Alice's workers need to assemble raw materials into jewelry
\square But Alice
d about theft
How ca materi: 25: $4=$ ers process the raw having access to theom?

An Analogy: Alice's Jewelry Store

\square Alice puts materials in locked glove box

- For which only she has the key
\square Workers assemble jewelry in the box
\square Alice unlocks box to get "results"

The Analogy

\square Enc: putting things inside the box

- Anyone can do this (imagine a mail-drop)
- $c_{i} \leftarrow E n c_{p k}\left(m_{i}\right)$
\square Dec: Taking things out of the box
- Only Alice can do it, requires the key
- $\mathrm{m}^{*} \leftarrow \operatorname{Dec}_{\mathrm{sk}}\left(\mathrm{c}^{*}\right)$
\square Eval: Assembling the jewelry
- Anyone can do it, computing on ciphertext
- $c^{*} \leftarrow \operatorname{Eval}_{\mathrm{pk}}\left(\Pi, \mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}\right)$
$\square m^{*}=\Pi\left(m_{1}, \ldots, m_{n}\right)$ is "the ring", made from "raw materials" $\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}$

Can we do it?

A As described so far, sure..

- $\left(\Pi, c_{1}, \ldots, c_{n}\right)=c^{*} \leftarrow \operatorname{Eval}_{p k}\left(\Pi, c_{1}, \ldots, c_{n}\right)$
- $\operatorname{Dec}_{\text {sk }}\left(\mathrm{c}^{*}\right)$ decrypts individual c_{i} 's, apply Π
(the workers do nothing, Alice assembles the jewelry by herself)

Of course, this is cheating:
\square We want c* to remain small

- independent of the size of Π
- "Compact" homomorphic encryption

Can be done with
"generic tools"
(Yao's garbled circuits)
\square We may also want Π to remain secret

What was known?

- "Somewhat homomorphic" schemes:
- Only work for some circuits
\square E.g., RSA works for MULT gates $(\bmod N)$ $c^{*}=c_{1} \times c_{2} \ldots \times c_{n}=\left(m_{1} \times m_{2} \ldots \times m_{n}\right)^{e}(\bmod N)$

"Somewhat Homomorphic" Schemes

\square RSA, EIGamal work for MULT mod N
\square GoMi, Paillier work for XOR, ADD
BGN05 works for quadratic formulas

- SYY99 works for shallow fan-in-2 circuits
- c^{*} grows exponentially with the depth of Π
\square IP07 works for branching program
\square MGH08 works for low-degree polynomials
- c* grows exponentially with degree

A Recent Breakthrough

\square Genrty09: A bootstrapping technique Somewhat homomorphic \rightarrow Fully homomorphic

Scheme E can evaluate
its own decryption circuit
:---:
evaluate any circuit

Gentry also described a candidate "bootstrappable" scheme

- Based on ideal lattices

The Current Work

\square A second "bootstrappable" scheme

- Very simple: using only modular arithmetic
\square Security is based on the hardness of finding "approximate-GCD"

Outline

1. A homomorphic symmetric encryption
2. Turning it into public-key encryption

- Result is "almost bootstrappable"

3. Making it bootstrappable

- Similar to Gentry'09

Time permitting
4. Security
5. Gentry's bootstrapping technique

Not today

A homomorphic symmetric encryption

\square Shared secret key: odd number p
\square To encrypt a bit m:

- Choose at random large q, small r
- Output $c=p q+2 r+m \sim \begin{gathered}2 r+m \text { much } \\ \text { smaller than } p\end{gathered}$
$>$ Ciphertext is close to a multiple of p
$\Rightarrow \mathrm{m}=$ LSB of distance to nearest multiple of p
\square To decrypt c:
- Output $m=(c \bmod p) \bmod 2$

Why is this homomorphic?

$c_{1}=q_{1} p+2 r_{1}+m_{1}, \quad c_{2}=q_{2} p+2 r_{2}+m_{2}$
$\square c_{1}+c_{2}=\left(q_{1}+q_{2}\right) p+2\left(r_{1}+r_{2}\right)+\left(m_{1}+m_{2}\right)$

- $2\left(r_{1}+r_{2}\right)+\left(m_{1}+m_{2}\right)$ still much smaller than p
$\rightarrow c_{1}+c_{2} \bmod p=2\left(r_{1}+r_{2}\right)+\left(m_{1}+m_{2}\right)$
$\square c_{1} \times c_{2}=\left(c_{1} q_{2}+q_{1} c_{2}-q_{1} q_{2}\right) p$ $+2\left(2 r_{1} r_{2}+r_{1} m_{2}+m_{1} r_{2}\right)+m_{1} m_{2}$
- $2\left(2 r_{1} r_{2}+\ldots\right)$ still much smaller than p
$\rightarrow \mathrm{c}_{1} \mathrm{xc}_{2} \bmod p=2\left(2 \mathrm{r}_{1} \mathrm{r}_{2}+\ldots\right)+\mathrm{m}_{1} \mathrm{~m}_{2}$

How homomorphic is this?

\square Can keep adding and multiplying until the "noise term" grows larger than q/2

- Noise doubles on addition, squares on multiplication
\square We choose $r \sim 2^{n}, p \sim 2^{n^{2}}$ (and $\left.q \sim 2^{n^{5}}\right)$
- Can compute polynomials of degree $\sim n$ before the noise grows too large

Homomorphic Public-Key Encryption

\square Secret key is an odd p as before
\square Public key is many "encryptions of 0 "

- $x_{i}=\left[q_{i} p+2 r_{i}\right]_{x 0}$ for $i=1,2, \ldots, n$
$\square E \mathrm{Enc}_{\mathrm{pk}}(\mathrm{m})=\left[\text { subset-sum }\left(x_{i}^{\prime} \mathrm{s}\right)+m+2 r\right]_{\mathrm{x}}$
$\square \operatorname{Dec}_{s k}(c)=(c \bmod p) \bmod 2$
\square Eval as before

Keeping it small

\square The ciphertext's bit-length doubles with every multiplication

- The original ciphertext already has n^{6} bits
- After $\sim \log n$ multiplications we get $\sim n^{7}$ bits
\square We can keep the bit-length at n^{6} by adding more "encryption of zero"
- $\left|y_{1}\right|=n^{6}+1,\left|y_{2}\right|=n^{6}+2, \ldots,\left|y_{m}\right|=2 n^{6}$
- Whenever the ciphertext length grows, set $c^{\prime}=c \bmod y_{m} \bmod y_{m-1} \ldots \bmod y_{1}$

Bootstrappable yet?

\square Almost, but not quite:

c / p, rounded to nearest integer

\square Decryption is $m=c-(p \times[c / p]) \bmod 2$

- Same as $c-[c / p] \bmod 2$, since p is odd
- Computing $[c / p]$ mod 2 takes degree $O(n)$
- But $O()$ has constant bigger than one
$>$ Our scheme only supports degree < n
\square To get a bootstrappable scheme, use Gentry09 technique to "squash the decryption circuit"

Squashing the decryption circuit

\square Add to public key many real numbers

- $r_{1}, r_{2}, \ldots, r_{t} \in[0,2]$
- \exists sparse set S for which $\Sigma_{i \in S} r_{i}=1 / p \bmod 2$
\square Enc, Eval output $\psi_{i}=c \times r_{i} \bmod 2, i=1, \ldots, t$ - Together with c itself
\square New secret key is bit-vector $\sigma_{1}, \ldots, \sigma_{t}$
- $\sigma_{i}=1$ if $\mathrm{i} \in \mathrm{S}, \sigma_{\mathrm{i}}=0$ otherwise
\square New $\operatorname{Dec}(\mathrm{c})$ is $\mathrm{c}-\left[\Sigma_{i} \sigma_{i} \Psi_{i}\right] \bmod 2$
- Can be computed with a "low-degree circuit" because S is sparse

Security

\square The approximate-GCD problem:

- Input: integers $x_{1}, x_{2}, x_{3}, \ldots$
$>$ Chosen as $x_{i}=q_{i} p+r_{i}$ for a secret odd p
$>p \epsilon_{\phi}[0, P], q_{i} \epsilon_{\phi}[0, Q], r_{i} \in_{\phi}[0, R]$ (with $R \ll P \ll Q$)
- Task: find p
\square Thm: If we can distinguish Enc(0)/Enc(1) for some p, then we can find that p
- Roughly: the LSB of r_{i} is a "hard core bit"
\rightarrow Scheme is secure if approx-GCD is hard
\square Is approx-GCD really a hard problem?

Hardness of Approximate-GCD

\square Several lattice-based approaches for solving approximate-GCD

- Related to Simultaneous Diophantine Approximation (SDA)
- Studied in [Hawgrave-Graham01]
$>$ We considered some extensions of his attacks
\square All run out of steam when $\left|q_{i}\right|>|p|^{2}$
- In our case $|p| \sim n^{2},\left|q_{i}\right| \sim n^{5} \gg|p|^{2}$

Relation to SDA

$\square x_{i}=q_{i} p+r_{i}\left(r_{i}<p<q_{i}\right), i=0,1,2, \ldots$

- $y_{i}=x_{i} / x_{0}=\left(q_{i}+s_{i}\right) / q_{0}, s_{i} \sim r_{i} / p \ll 1$
- $y 1, y 2, \ldots$ is an instance of SDA
$>\mathrm{q}_{0}$ is a denominator that approximates all $\mathrm{y}_{\mathrm{i}}^{\prime} \mathrm{s}$
\square Use Lagarias'es algorithm:
- Consider the rows of this matrix:
- Find a short vector in the lattice that they span
- $<q_{0}, q_{1}, \ldots, q_{t}>\cdot L$ is short
- Hopefully we will find it

$$
L=\left(\begin{array}{cccc}
R & x_{1} & x_{2} & \ldots \\
-x_{t} & \\
-x_{0} & & \\
& -x_{0} & \\
& & \ldots & \\
& & & -x_{0}
\end{array}\right)
$$

Relation to SDA (cont.)

\square When will Lagarias'es algorithm succeed?

- $<\mathrm{q}_{0}, \mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{t}}>\cdot \mathrm{L}$ should be shortest in lattice
$>$ In particular shorter than $\sim \operatorname{det}(\mathrm{L})^{1 / t+1}$
- This only holds for $t>\log \mathrm{Q} / \log \mathrm{P}$ Minkowski
- The dimension of the lattice is $t+1$
- Quality of lattice-reduction deteriorates exponentially with t
- When $\log \mathrm{Q}>(\log P)^{2}($ so $t>\log P)$, LLL-type reduction isn't good enough anymore

Conclusions

\square Fully Homomorphic Encryption is a very powerful tool
\square Gentry09 gives first feasibility result - Showing that it can be done "in principle"
\square We describe a "conceptually simpler" scheme, using only modular arithmetic

What about efficiency?

- Computation, ciphertext-expansion are polynomial, but a rather large one...

Thank you

