
Fully Homomorphic
Encryption over the Integers

Marten van Dijk1, Craig Gentry2,
Shai Halevi2, Vinod Vaikuntanathan2

1 – MIT, 2 – IBM Research

Many slides borrowed
from Craig

Computing on Encrypted Data

� Storing my files on the cloud

� Encrypt them to protect my information

� Search through them for emails with
“homomorphic” in the subject line

� Cloud should return only these (encrypted)
messages, w/o knowing the key

� Private Internet search

� Encrypt my query, send to Google

� I still want to get the same results

� Results would be encrypted too

Public-key Encryption

� Three procedures: KeyGen, Enc, Dec

� (sk,pk) � KeyGen($)

� Generate random public/secret key-pair

� c � Encpk(m)

� Encrypt a message with the public key

� m � Decsk(c)

� Decrypt a ciphertext with the secret key

� E.g., RSA: c�me mod N, m�cd mod N

� (N,e) public key, d secret key

Homomorphic Public-key Encryption

� Also another procedure: Eval

� c* � Evalpk(Π, c1,…,cn)

� Π a Boolean circuit with ADD, MULT mod 2

Encryption of inputs
m1,…,mn to Π

Circuit

Encryption of output
value m*=Π(m1,…,mn)

An Analogy: Alice’s Jewelry Store

� Alice’s workers need to assemble raw
materials into jewelry

� But Alice is worried about theft

How can the workers process the raw
materials without having access to them?

An Analogy: Alice’s Jewelry Store

� Alice puts materials in locked glove box

� For which only she has the key

� Workers assemble jewelry in the box

� Alice unlocks box to get “results”

The Analogy

� Enc: putting things inside the box
� Anyone can do this (imagine a mail-drop)

� ci � Encpk(mi)

� Dec: Taking things out of the box
� Only Alice can do it, requires the key

� m* � Decsk(c*)

� Eval: Assembling the jewelry
� Anyone can do it, computing on ciphertext

� c* � Evalpk(Π, c1,…,cn)

� m* = Π(m1,…,mn) is “the ring”, made
from “raw materials” m1,…,mn

Can we do it?

� As described so far, sure..

� (Π, c1,…,cn) = c* �Evalpk(Π, c1,…,cn)

� Decsk(c*) decrypts individual ci’s, apply Π

(the workers do nothing, Alice assembles
the jewelry by herself)

Of course, this is cheating:

� We want c* to remain small

� independent of the size of Π

� “Compact” homomorphic encryption

� We may also want Π to remain secret

Can be done with
“generic tools”
(Yao’s garbled

circuits)

This is the main
challenge

What was known?

� “Somewhat homomorphic” schemes:

� Only work for some circuits

� E.g., RSA works for MULT gates (mod N)

c*= c1 x c2 … x cn =(m1 x m2 … x mn)
e (mod N)

c1 = m1
e c2 = m2

e cn = mn
e

X

“Somewhat Homomorphic” Schemes

� RSA, ElGamal work for MULT mod N

� GoMi, Paillier work for XOR, ADD

� BGN05 works for quadratic formulas

� SYY99 works for shallow fan-in-2 circuits

� c* grows exponentially with the depth of Π

� IP07 works for branching program

� MGH08 works for low-degree polynomials

� c* grows exponentially with degree

A Recent Breakthrough

� Genrty09: A bootstrapping technique

Somewhat homomorphic → Fully homomorphic

� Gentry also described a candidate
“bootstrappable” scheme

� Based on ideal lattices

Scheme E can evaluate
its own decryption circuit

Scheme E* can
evaluate any circuit

The Current Work

� A second “bootstrappable” scheme

� Very simple: using only modular arithmetic

� Security is based on the hardness of
finding “approximate-GCD”

Not today

Time permitting

Outline

1. A homomorphic symmetric encryption

2. Turning it into public-key encryption

� Result is “almost bootstrappable”

3. Making it bootstrappable

� Similar to Gentry’09

4. Security

5. Gentry’s bootstrapping technique

A homomorphic symmetric encryption

� Shared secret key: odd number p

� To encrypt a bit m:

� Choose at random large q, small r

� Output c = pq + 2r + m

� Ciphertext is close to a multiple of p

� m = LSB of distance to nearest multiple of p

� To decrypt c:

� Output m = (c mod p) mod 2

2r+m much
smaller than p

Why is this homomorphic?

� c1=q1p+2r1+m1, c2=q2p+2r2+m2

� c1+c2 = (q1+q2)p + 2(r1+r2) + (m1+m2)

� 2(r1+r2)+(m1+m2) still much smaller than p

�c1+c2 mod p = 2(r1+r2) + (m1+m2)

� c1 x c2 = (c1q2+q1c2−q1q2)p
+ 2(2r1r2+r1m2+m1r2) + m1m2

� 2(2r1r2+…) still much smaller than p

�c1xc2 mod p = 2(2r1r2+…) + m1m2

Distance to nearest multiple of p

How homomorphic is this?

� Can keep adding and multiplying until
the “noise term” grows larger than q/2

� Noise doubles on addition, squares on
multiplication

� We choose r ~ 2n, p ~ 2n (and q ~ 2n)

� Can compute polynomials of degree ~n
before the noise grows too large

2 5

Homomorphic Public-Key Encryption

� Secret key is an odd p as before

� Public key is many “encryptions of 0”

� xi = qip + 2ri

� Encpk(m) = subset-sum(xi’s)+m

� Decsk(c) = (c mod p) mod 2

� Eval as before

[]x0 for i=1,2,…,n

[+2r]x0

Keeping it small

� The ciphertext’s bit-length doubles with
every multiplication

� The original ciphertext already has n6 bits

� After ~log n multiplications we get ~n7 bits

� We can keep the bit-length at n6 by
adding more “encryption of zero”

� |y1|=n
6+1, |y2|=n

6+2, …, |ym|=2n
6

� Whenever the ciphertext length grows,
set c’ = c mod ym mod ym-1 … mod y1

Bootstrappable yet?

� Almost, but not quite:

� Decryption is m = c – (p x [c/p]) mod 2

� Same as c–[c/p] mod 2, since p is odd

� Computing [c/p] mod 2 takes degree O(n)

� But O() has constant bigger than one

� Our scheme only supports degree < n

� To get a bootstrappable scheme, use
Gentry09 technique to “squash the
decryption circuit”

c/p, rounded to
nearest integer

Squashing the decryption circuit

� Add to public key many real numbers
� r1,r2, …, rt ∈ [0,2]

� ∃ sparse set S for which Σi∈S ri = 1/p mod 2

� Enc, Eval output ψi=c x ri mod 2, i=1,…,t
� Together with c itself

� New secret key is bit-vector σ1,…,σt
� σi=1 if i∈S, σi=0 otherwise

� New Dec(c) is c – [Σi σiΨi] mod 2
� Can be computed with a “low-degree circuit”
because S is sparse

Security

� The approximate-GCD problem:

� Input: integers x1, x2, x3, …

� Chosen as xi = qip + ri for a secret odd p

� p∈$[0,P], qi∈$[0,Q], ri∈$[0,R] (with R ^ P ^ Q)

� Task: find p

� Thm: If we can distinguish Enc(0)/Enc(1)
for some p, then we can find that p

� Roughly: the LSB of ri is a “hard core bit”

� Scheme is secure if approx-GCD is hard

� Is approx-GCD really a hard problem?

Hardness of Approximate-GCD

� Several lattice-based approaches for
solving approximate-GCD

� Related to Simultaneous Diophantine
Approximation (SDA)

� Studied in [Hawgrave-Graham01]

� We considered some extensions of his attacks

� All run out of steam when |qi|>|p|
2

� In our case |p|~n2, |qi|~n
5 p |p|2

Relation to SDA

� xi = qip + ri (ri ^ p ^ qi), i = 0,1,2,…

� yi = xi/x0 = (qi+si)/q0, si ~ ri/p ^ 1

� y1, y2, … is an instance of SDA

� q0 is a denominator that approximates all yi’s

� Use Lagarias’es algorithm:

� Consider the rows of this matrix:

� Find a short vector in the
lattice that they span

� <q0,q1,…,qt>·L is short

� Hopefully we will find it

R x1 x2 … xt
-x0

-x0
…
-x0

L=

Relation to SDA (cont.)

� When will Lagarias’es algorithm succeed?

� <q0,q1,…,qt>·L should be shortest in lattice

� In particular shorter than ~det(L)1/t+1

� This only holds for t > log Q/log P

� The dimension of the lattice is t+1

� Quality of lattice-reduction deteriorates
exponentially with t

� When log Q > (log P)2 (so t>log P),
LLL-type reduction isn’t good enough
anymore

Minkowski
bound

Conclusions

� Fully Homomorphic Encryption is a very
powerful tool

� Gentry09 gives first feasibility result
� Showing that it can be done “in principle”

� We describe a “conceptually simpler”
scheme, using only modular arithmetic

� What about efficiency?
� Computation, ciphertext-expansion are
polynomial, but a rather large one…

Thank you

