Homomorphic Encryption

Tutorial

Shai Halevi — IBM
August 2013

Computing on Encrypted Data

| want to delegate processing of my dat

without giving away access to it.

Outsourcing Computation

Client ‘ Server/Cloud
(Input: X) (Function: f)

Privacy Homomorphisms

e Rivest-Adelman-Dertouzos 1978

Plaintext space P

X1 X,

N

7

y

Example: RSA_encrypt, \(X) = Xx* mod N
@ X EXxX,F = (Xy XxX,) ¢ mod N

c; € Enc(x)

Ciphertext space C

y € Dec(d)

¢y)

N

7

d

“Somewhat Homomorphic”: can compute some
functions on encrypted data, but not all

“Fully Homomorphic” Encryption

@ Encryption for which we can compute arbitrary
functions on the encrypted data

Enc(x) f

|
Enc(f(x))

Some Notations

@ An encryption scheme: (KeyGen, Enc, Dec)
@ Plaintext-space ={0,1}
9@ (pk,sk) €<KeyGen(S), C<Encp(b), b<Decylc)

@ Semantic security [GM’84]:
(pki Encpk(o)) = (pki Encpk(l))

~ means indistinguishable by efficient algorithms

Homomorphic Encryption (HE)

@ H = {KeyGen, Enc, Dec, Eval}
c* € Evaly(f,) c*

@ Homomorphic: Decsk((Evaka(f, Encpk(x))s = f(X)
©@ c* may not look like a “fresh” ciphertext

@ As long as it decrypts to f(X)
@ Compact: Decrypting c* easier than computing f

@ Otherwise we could use Eval (f, ¢)=(f, c) and
Dec,,(f, c) = f(Dec,,/(c))

@ Technically, |c*| independent of the complexity of f

Fully Homomorphic Encryption

@ First plausible candidate in [Gen’09]

@ Security from hard problems in ideal lattices
@ Polynomially slower than computing in the clear
@ Big polynomial though
® Many advances since

@ Other hardness assumptions
@ LWE, RLWE, NTRU, approximate-GCD
@ More efficient

@ Other “Advanced properties”
9@ Multi-key, Identity-based, ...

This Talk

@ Regev-like somewhat-homomorphic encryption

@ Adding homomorphism to [Reg’05] cryptosystem
@ Security based on LWE, Ring-LWE
@ Based on [BV'11, BGV’'12, B'12]
@ Bootstrapping to get FHE [Gen’09]
@ Packed ciphertexts for efficiency
©@ Based on [SV'1]1, BGV’'12, GHS'12]
@ Not in this talk: a new LWE-based scheme
9@ [Gentry-Sahai-Waters CRYPTO 2013]

Learning with Errors [Reg’05]

Many equivalent forms, this is one of them:
@ Parameters: g (modulus), n (dimension)

@ Secret: a random short vector s € ZZ}

@ |nput: many pairs (a;, b;)
Y a; € Zj israndom, b; = (s,a;) + e; (mod q)
9 e; is short
@ Goal: find the secret s
@ Or distinguish (a;, b;) from random in ZZ}+1

[Regev’05, Peikert’09]: As hard as some worst-case
lattice problems in dim N (for certain range of params)

Regev’s Cryptosystem [Reg’05]

@ The shared-key variant (enough for us)
@ Secret key: vector s', denote s = (s',1)
@ Encrypt(c € {0,1})
@ c=(ab)st. b = a% —(s’,a) + e (mod q)
@ Convenient to write (s, c) = a% + e (mod q)
@ Decrypt(s, c)
@ Qutput 0if |(s,c) mod g|< q/4, else output 1
@ Correct decryption das Iong as error < C[/4-
Security: If LWE is hard, cipehrtext is pseudorandom

Additive Homomorphism

@ If(s,c;) = Ji%(mod q) then
(s,¢1+¢3) = (0, 02)%(mod a)
@ Error doubles on addition
@ Correct decryption as long as the error < g /4

How to Multiply [BV'11, B'12]

@ Step 1: Tensor Product
9 If(s,c;) = al— (mod g) and s is smaII (|s] < q)
then{(s ® s,¢; Q c,) = 0102 — (mod q<)

@ Error has extra additive terms of size = |s| - g K g?
@ Soc” =round((c; X cz)/g) encrypts 0,0,

relative to secret key s* = (s @ s)

@ Rounding adds another small additive error

©@ But the dimension squares on multiply

How to Multiply [BV'11, B'12]

@ Step 2: Dimension Reduction

@ Publish “key-switching gadget” to ranslate
c*wrts* =2 cwrts

@ Essentially an encryption of s™ under s
@ n X n? rational matrix W s.t. s” x W =~ s*(mod q)

@ Given c¢*, compute ¢ <« Round(W X ¢*) (mod q)

@ (s,c)~ sl XxXW xc* = (s*c*) ~ a% (mod q)

@ Some extra work to keep error from growing too much

@ Still secure under reasonable hardness assumptions

Somewhat Homomorphic Encryption

@ Error doubles on addition, grows by poly(n)
factor on multiplication (e.g., n* factor)
© When computing a depth-d circuit we have
|output-error| < |input-error| - n?¢
@ Setting parameters:
@ Start from |input-error| < n¢ (say)
@ Setq > 4n? - n?9 = 4n34
@ Set the dimension large enough to get security
@ |output-error| < g/4, so no decryption errors

FHE via Bootstrapping [Gen’09]

@ So far, circuits of pre-determined depth

Clxy, X5 ,eees X,)

16

FHE via Bootstrapping [Gen'09]

@ So far, circuits of pre-determined depth

e —]
1
S T—

Clxy, X5 ,eees X,)

@ Can evally=C(X{,X,...,X,) when /s are “fresh”
@ Buty|is an “evaluated ciphertext”

@ Can still be decrypted
“@ But eval [0

will increase noise too much

17

FHE via Bootstrapping [Gen'09]

Clxy, X5 ,eees X,)

@ Bootstrapping to handle deeper circuits

@ We have a noisy evaluated ciphertextly

@ Want to get another|y |with less noise

18

FHE via Bootstrapping [Gen'09]

@ For ciphertext ¢, consider D (sk) = Dec(c)
@ Hope: D (*) is a low-depth circuit (on input sk)
@ Include in the public key also Encpk(sk)
Requires
“circular
security” }

¢’| De(sk)
= Decylc) =y

® Homomorphic computation applied only to the
“fresh” encryption of sk !

FHE via Bootstrapping [Gen’09]

@ Similarly define Mc,,(Sk) = Decg(c,)-Decg(c,)

Y1 Yo

¢)

Mcl,cz(Sk)

= Decy(c;) X Decy(cy) = ¥, XY,

® Homomorphic computation applied only to the
“fresh” encryption of sk

(In)Efficiency of This Scheme

@ The LWE-based somewhat-homomorphic
scheme has depth-O(log gn) decryption circuit

® To get FHE need modulus g = 2P°109() and
dimension n = Q(k)

@ [k is the security parameter

@ The ciphertext-size is Q(k) bits

@ Key-switching matrix is of size Q(k3) bits
=> Each multiplication takes at least Q(k3) times

= O (k) slowdown vs. computing in the clear

Better Efficiency with Ring-LWE

@ Replace Z by Z[X]/F(X)
@ Fis a degree-d polynomial with d = ©(k)

@ Can get security with lower dimension
@ n=0(~k/d),aslowasn =2

@ The ciphertext-size still (k) bits

@ But key-switching matrix size only ©(k) bits
@ Itincludes n? X n = 8 ring elements

=> 0(k) slowdown vs. computing in the clear

Ciphertext Packing

@ Cannot reduce ciphertext size below 0 (k)

@ But we can pack more bits in each ciphertext
@ Recall decryption: ptxt « MSB((s,c) mod q)
@ ptxtis a polynomialin R, = Z|X|/(F(X), 2)

@ Use cyclotomic rings, F(X) = ®,,,(X)
@ Use CRT in R, to pack many bits inside m

© The cryptosystem remains unchanged
©@ Encoding/decoding of bits inside plaintext polys

Plaintext Algebra

@ ¢ . (X) irreducible over Z, but not mod 2
@ ¢ _(X) =]_[leFj(X) (mod 2)

“ F’sareirreducible, all have the same degree d
@ degree disthe orderof 2in Z,,

m

@ For some m’s we can get £ = A Q()
d log m

® R, =Z,|X]|/®, isadirectsum, R, =D ; R, ;
@ R, = Z,[X]/F;(X) = GF(29)

¢
@ 1-1 mappinga € R, & |aq,...,ap] € GF(Zd)

Plaintext Slots

@ Plaintext a € R, encodes ¢ values a; € GF(2%)
@ To embed plaintext bits, use a; € GF(2) c GF (2%)

@ Ops +,x in R, work independently on the slots
@ £-ADD:a+a’ = [a; + ay, ..., ap + a,]
@ /-MUL:a X a' = [a; X ay, ., ap X a,]

@ Iff =~S~2(k) then our O(k)-bit ciphertext can
hold Q1(k) plaintext bits

@ Ciphertext-expansion ratio only polylog(k)

I EAE RN

= e T e e
10 0 1 0 1 0 .

T g [e | (e = [e T g [

@ We will use this later

Homomorphic SIMD [SV'11]

@ SIMD = Single Instruction Multiple Data

@ Computing the same function on £ inputs at the
price of one computation

@ Overhead only polylog(k)
@ Pack the inputs into the slots

@ Bit-slice, inputs to j'th instance go in j‘th slots
@ Compute the function once

@ After decryption, decode the £ output bits from
the output plaintext polynomial

Beyond SIMD Computation

@ To reduce overhead for a single computation:
@ Pack all input bits in just a few ciphertexts
@ Compute while keeping everything packed

@ How to do this?

function...

Input

bits

X21 X22 X23 X24 X25 X26

X14 X15 Xl6 Xl7 Xl8 Xl9

X5

X1 Xy X3 Xy

0 1 1 Input
Xl XZ X3 X4 X5 X7 X8X9 XlO Xll X12 X14 X15X16X17 Xl8 Xl9 X21X22 X23X24X25X26 b|ts

Routing Values Between Levels

® We need to map this

X, X, X3 X, X5 0 x, Xg X9 X590 X7 Xg 1 x5,
X5 Xj5 X397 Xj53 Xjg 1 x, Xy Xyz3 Xy, Xyy Xog

@ Into that ... so we can use f-add
LV Y T Y S . AL AL V. VA L V.

e et e i

@ |s there a natural operation on polynomials that
moves values between slots?

Using Automorphisms

@ The operation k;: a(X) » a(X?) € R,
@ Under some conditions on m, exists t € Z,, s.t.,
@ Foranya € R, encoding a « |[aq, ay, ..., ay],

Ke(a) © [ay, .., ap aq]
@ tisagenerator of Z;, /(2) (if it exists)

@ Once we have rotations, we can get every
permutation on the plaintext slots

@ Using only O(log ¢) shifts and SELECTs [GHS'12]
@ How to implement k; homomorphically?

Homomorphic Automorphism

@ Recall decryption via inner product (s, ¢) € R,
@ If a(X) = (s(X), c(X)) mod (P,,,(X), q) then also
a(Xt) = (s(X*), c(X")) mod (®,,(X*), q)
@ Since @,,(X)|P,,,(X?) forany t € Z;,, then also
a(X*) = (s(X"), c(X*)) mod (@.,(X), q)
@ Therefore ¢’ = k;(c) is an encryption of
a’ = k;(a) relative to key s = k;(s)
@ Can publish key-switching matrix W[s' — s] to
get back an encryption relative to s

August 15, 2013 33

Summary of RLWE HE encryption

@ Native plaintext space R, = Z,|X]/®,,
® a € R, used to pack £ values a; € GF(2%)

@ skiss € Ry, ctxt is a pair (co, ¢1) € Rg

@ Decryptionis a:= MSB({(cy,c1),(s,1)))
@ Inner product over R,

® Homomorphic addition, multiplication work
element-size on the q;’s

® Homomorphic automorphism to move aj’s
between the slots

