
 

Shai Halevi ― IBM 
August 2013 



I want to delegate processing of my data,  
without giving away access to it. 



Client Server/Cloud 

(Input: x) (Function: f) 

“I want to delegate the computation to the cloud” 
“I want to delegate the computation to the cloud,  

but the cloud shouldn’t see my input” 

Enc[f(x)] 

Enc(x)  f 



Example: RSA_encrypt(e,N)(x) = xe mod N  

x1
e x x2

e  =  (x1 x x2) e mod N  

“Somewhat Homomorphic”:  can compute some 
functions on encrypted data, but not all 

Plaintext space P Ciphertext space C 

x1           x2 
ci  Enc(xi) c1           c2 

* # 

y d 

y  Dec(d) 

• Rivest-Adelman-Dertouzos 1978 



Encryption for which we can compute arbitrary 
functions on the encrypted data 

Enc(f(x)) 

Enc(x)  Eval f 



An encryption scheme: (KeyGen, Enc, Dec) 

Plaintext-space = {0,1} 

(pk,sk) KeyGen($),  cEncpk(b),  bDecsk(c) 

Semantic security [GM’84]: 
     (pk, Encpk(0))    (pk, Encpk(1)) 

 means indistinguishable by efficient algorithms 
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H = {KeyGen, Enc, Dec, Eval} 
  c*  Evalpk(f, c) 

Homomorphic: Decsk(Evalpk( f, Encpk(x))) = f(x) 

c* may not look like a “fresh” ciphertext 

As long as it decrypts to f(x) 

Compact: Decrypting c* easier than computing f 

Otherwise we could use Evalpk (f, c)=(f, c) and 
Decsk(f, c) = f(Decsk(c)) 

Technically, |c*| independent of the complexity of f 
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c* 



First plausible candidate in [Gen’09] 

Security from hard problems in ideal lattices 

Polynomially slower than computing in the clear 

Big polynomial though 

Many advances since 

Other hardness assumptions 

LWE, RLWE, NTRU, approximate-GCD 

More efficient 

Other “Advanced properties” 

Multi-key, Identity-based, … 
8 



Regev-like somewhat-homomorphic encryption 

Adding homomorphism to [Reg’05] cryptosystem 

Security based on LWE, Ring-LWE 

Based on [BV’11, BGV’12,  B’12] 

Bootstrapping to get FHE [Gen’09] 

Packed ciphertexts for efficiency 

Based on [SV’11, BGV’12, GHS’12] 

Not in this talk: a new LWE-based scheme 

[Gentry-Sahai-Waters CRYPTO 2013] 
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Many equivalent forms, this is one of them: 

Parameters: 𝑞 (modulus), 𝑛 (dimension) 

Secret: a random short vector 𝒔 ∈ 𝑍𝑞
𝑛 

Input: many pairs (𝒂𝒊, 𝑏𝑖) 
𝒂𝑖 ∈ 𝑍𝑞

𝑛 is random, 𝑏𝑖 = 𝒔, 𝒂𝑖 + 𝑒𝑖 (𝑚𝑜𝑑 𝑞) 
𝑒𝑖 is short 

Goal: find the secret 𝒔 

Or distinguish (𝒂𝑖 , 𝑏𝑖) from random in 𝑍𝑞
𝑛+1 

[Regev’05, Peikert’09]: As hard as some worst-case  
lattice problems in dim n (for certain range of params)  



The shared-key variant (enough for us) 

Secret key: vector 𝒔′  

Encrypt 𝜎 ∈ {0,1}  

𝒄 = (𝒂, 𝑏) s.t. 𝑏 = 𝜎
𝑞

2
− 𝒔′, 𝒂 + 𝑒 (𝑚𝑜𝑑 𝑞) 

Convenient to write 𝒔, 𝒄 = 𝜎
𝑞

2
+ 𝑒 (𝑚𝑜𝑑 𝑞) 

Decrypt(𝒔, 𝒄) 

Output 0 if | 𝒔, 𝒄  mod q|≤ 𝑞/4, else output 1 

Correct decryption as long as error < 𝑞/4 

Security: If LWE is hard, cipehrtext is pseudorandom 

, denote 𝒔 = 𝒔′, 𝟏  



If 𝒔, 𝒄𝑖 ≈ 𝜎𝑖
𝑞

2
 (mod q) then 

 𝒔, 𝒄𝟏 + 𝒄2 ≈ (𝜎1⊕𝜎2)
𝑞

2
 (mod q) 

Error doubles on addition 

Correct decryption as long as the error < 𝑞/4 
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Step 1: Tensor Product 

If 𝒔, 𝒄𝑖 ≈ 𝜎𝑖
𝑞

2
 (mod q) and s is small (|𝒔| ≪ 𝑞) 

then 𝒔⊗ 𝒔, 𝒄1 ⊗ 𝒄2 ≈ 𝜎1𝜎2
𝑞2

4
 (mod 𝑞2) 

Error has extra additive terms of size ≈ 𝑠 ⋅ 𝑞 ≪ 𝑞2 

So 𝒄∗ = 𝑟𝑜𝑢𝑛𝑑((𝒄1 ⊗𝒄2)/
𝑞

2
) encrypts 𝜎1𝜎2 

relative to secret key 𝒔∗ = (𝒔⊗ 𝒔) 

Rounding adds another small additive error 

But the dimension squares on multiply 



Step 2: Dimension Reduction 

Publish “key-switching gadget” to ranslate 
𝒄∗ wrt 𝒔∗  𝒄 wrt 𝒔 

Essentially an encryption of 𝒔∗ under 𝒔 

𝑛 × 𝑛2 rational matrix W s.t. 𝒔𝑻 ×𝑊 ≈ 𝒔∗(𝑚𝑜𝑑 𝑞) 

Given 𝒄∗, compute 𝐜 ← Round 𝑊 × 𝒄∗  (𝑚𝑜𝑑 𝑞) 

𝒔, 𝒄 ≈ 𝒔𝑻 ×𝑊 × 𝒄∗ ≈ 𝒔∗, 𝒄∗ ≈ 𝜎
𝑞

2
 (𝑚𝑜𝑑 𝑞) 

Some extra work to keep error from growing too much 

Still secure under reasonable hardness assumptions 



Error doubles on addition, grows by poly(n) 
factor on multiplication (e.g., 𝑛2 factor) 

When computing a depth-𝑑 circuit we have 
|output-error| ≤ |input-error| ⋅ 𝑛2𝑑  

Setting parameters: 

Start from |input-error| ≤ 𝑛𝑑  (say) 

Set 𝑞 > 4𝑛𝑑 ⋅ 𝑛2𝑑 = 4𝑛3𝑑  

Set the dimension large enough to get security 

|output-error| < 𝑞/4, so no decryption errors 
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16 

C(x1, x2 ,…, xt) 

x1 

… 

x2 

xt 

C 

So far, circuits of pre-determined depth 



So far, circuits of pre-determined depth 

Can eval y=C(x1,x2…,xn) when xi’s are “fresh” 

But y is an “evaluated ciphertext” 

Can still be decrypted 

But eval C’(y) will increase noise too much 
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x1 

… 

x2 

xt 

C 

C(x1, x2 ,…, xt) 



So far, circuits of pre-determined depth 

Bootstrapping to handle deeper circuits 

We have a noisy evaluated ciphertext y 

Want to get another y  with less noise 
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x1 

… 

x2 

xt 

C 

C(x1, x2 ,…, xt) 



For ciphertext c, consider Dc(sk) = Decsk(c) 

Hope: Dc(*) is a low-depth circuit (on input sk) 

Include in the public key also Encpk(sk) 

 

 

 

 
 

Homomorphic computation applied only to the 
“fresh” encryption of sk 
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Dc 

y 

sk1 

sk2 

skn 

… 

c 

Dc(sk) 

= Decsk(c)  =  y 

c’ 

Requires 
“circular 
security” 

sk1 

sk2 

skn 

… 



Similarly define Mc1,c2(sk) = Decsk(c1)∙Decsk(c1) 
 
 
 
 
 
 
 
Homomorphic computation applied only to the 
“fresh” encryption of sk 
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Mc1,c2 

y2 

sk1 

sk2 

skn 

… 

c2 

Mc1,c2(sk) 

= Decsk(c1) x Decsk(c2)  =  y1 x y2 

c’ 

y1 
c1 

sk1 

sk2 

skn 

… 



The LWE-based somewhat-homomorphic 
scheme has depth-𝑂 (log 𝑞𝑛) decryption circuit 

To get FHE need modulus 𝑞 ≥ 2𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑘) and 
dimension n ≥ Ω (𝑘) 

𝑘 is the security parameter 

The ciphertext-size is Ω (𝑘) bits 

Key-switching matrix is of size Ω (𝑘3) bits 

 Each multiplication takes at least Ω (𝑘3) times 

 Ω (𝑘3) slowdown vs. computing in the clear 
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Replace Z by Z[X]/F(X) 

F is a degree-d polynomial with 𝑑 = Θ (𝑘) 

Can get security with lower dimension 

𝑛 = Θ 𝑘/𝑑 , as low as 𝑛 = 2 

The ciphertext-size still Ω (𝑘) bits 

But key-switching matrix size only Θ (𝑘) bits 

It includes 𝑛2 × 𝑛 = 8 ring elements 

 Θ (𝑘) slowdown vs. computing in the clear 
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Cannot reduce ciphertext size below Θ (𝑘) 

But we can pack more bits in each ciphertext 

Recall decryption: 𝑝𝑡𝑥𝑡 ← 𝑀𝑆𝐵(⟨𝒔, 𝒄⟩  𝑚𝑜𝑑 𝑞) 

𝑝𝑡𝑥𝑡 is a polynomial in R2 = 𝑍 𝑋 /(𝐹 𝑋 , 2) 

Use cyclotomic rings, 𝐹 𝑋 = Φ𝑚 𝑋  

Use CRT in 𝑅2 to pack many bits inside m 

The cryptosystem remains unchanged 

Encoding/decoding of bits inside plaintext polys 
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Φ𝑚(𝑋) irreducible over Z, but not mod 2 

Φ𝑚 𝑋 ≡ ∏𝑗=1
ℓ 𝐹𝑗 𝑋  (mod 2) 

Fj’s are irreducible, all have the same degree d 
degree d is the order of 2 in 𝑍𝑚

∗  

For some m’s we can get ℓ =
𝜙 𝑚

𝑑
= Ω(

m

log  m
) 

R2 = 𝑍2 𝑋 /Φ𝑚 is a direct sum, R2 = ⊕𝑗 𝑅2,𝑗 

𝑅2,𝑗 = 𝑍2 𝑋 /𝐹𝑗 𝑋 ≅ 𝐺𝐹(2𝑑) 

1-1 mapping 𝑎 ∈ 𝑅2 ↔ 𝛼1, … , 𝛼ℓ ∈ 𝐺𝐹 2𝑑
ℓ
 



Plaintext 𝑎 ∈ 𝑅2 encodes ℓ values 𝛼𝑗 ∈ 𝐺𝐹(2𝑑) 

To embed plaintext bits, use 𝑎j ∈ 𝐺𝐹 2 ⊂ 𝐺𝐹(2𝑑) 

Ops +, in 𝑅2 work independently on the slots 

ℓ-ADD: 𝑎 + 𝑎′ ≅ 𝛼1 + 𝛼1
′ , … , 𝛼ℓ + 𝛼ℓ

′  

ℓ-MUL: 𝑎 × 𝑎′ ≅ 𝛼1 × 𝛼1
′ , … , 𝛼ℓ × 𝛼ℓ

′   

If ℓ = Ω (𝑘) then our Θ (𝑘)-bit ciphertext can 
hold Ω (𝑘) plaintext bits 

Ciphertext-expansion ratio only polylog(k) 



We will use this later 

1 0 0 1 0 1 0 

x1 x2 x3 x4 x5 x6 x7 

x8 x9 x10 x11 x12 x13 x14 

0 1 1 0 1 0 1 

x1 0 0 x4 0 x6 0 

0 x9 x10 0 x12 0 x14 

x 

x 

= 

= 

+ 

x1 x9 x10 x4 x12 x6 x14 



SIMD = Single Instruction Multiple Data 

Computing the same function on ℓ inputs at the 
price of one computation 

Overhead only polylog(k) 

Pack the inputs into the slots 
Bit-slice, inputs to j’th instance go in j‘th slots 

Compute the function once 

After decryption, decode the ℓ output bits from 
the output plaintext polynomial 



To reduce overhead for a single computation: 
Pack all input bits in just a few ciphertexts 

Compute while keeping everything packed  

How to do this? 
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+ + + + + + + + + + + + + 

×
 

×
 

×
 

×
 

×
 

×
 

×
 

×
 

×
 

×
 

×
 

+ + + + + + + + + 

0 1 1 

1 

1 

x1 x2 x3 x4 x5 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 x21 x22 x23 x24 x25 x26 

Input 
bits 



x1 x2 x3 x4 x5 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 x21 x22 x23 x24 x25 x26 

x15 x16 x17 x18 x19 x21 x8 x9 x10 x11 x12 x14 x1 x2 x3 x4 x5 x7 x22 x23 x24 x25 x26 

Input 
bits 

+ + + + + + + + + + + + + 

×
 

×
 

×
 

×
 

×
 

×
 

×
 

×
 

×
 

×
 

×
 

+ + + + + + + + + 

0 1 1 

1 

1 

 



We need to map this 

 
 

Into that  

Is there a natural operation on polynomials that 
moves values between slots? 

 

x15 x16 x17 x18 x19  1 x21 

x8 x9 x10 x11 x12  1 x14 x1 x2 x3 x4 x5  0 x7 

x22 x23 x24 x25 x26 

x15 x17 x19 x21 x23 x25 

x2 x4  0 x8 x10 x12 x14 

x1 x3 x5 x7 x9 x11  1 

x16 x18  1 x22 x24 x26 

+ + + + + + + + + + + + + 

… so we can use ℓ-add 



The operation 𝜅𝑡: 𝑎 𝑋 ↦ 𝑎 𝑋𝑡 ∈ 𝑅2 

Under some conditions on m, exists 𝑡 ∈ 𝑍𝑚
∗  s.t., 

For any 𝑎 ∈ 𝑅2 encoding 𝑎 ↔ 𝛼1, 𝛼2, … , 𝛼ℓ ,  
𝜅𝑡(𝑎) ↔  𝛼2, … , 𝛼ℓ, 𝛼1  

t is a generator of 𝑍𝑚
∗ /(2) (if it exists) 

Once we have rotations, we can get every 
permutation on the plaintext slots 

Using only 𝑂(log ℓ) shifts and SELECTs [GHS’12] 

How to implement 𝜅𝑡 homomorphically? 
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Recall decryption via inner product 𝒔, 𝒄 ∈ 𝑅𝑞 

If 𝑎 𝑋 = 𝒔(𝑋), 𝒄(𝑋)  𝑚𝑜𝑑 Φ𝑚 𝑋 , 𝑞  then also 
𝑎 𝑋𝑡 = 𝒔(𝑋𝑡), 𝒄(𝑋𝑡)  𝑚𝑜𝑑 Φ𝑚 𝑋𝑡 , 𝑞  

Since Φ𝑚 𝑋 |Φ𝑚 𝑋𝑡  for any 𝑡 ∈ 𝑍𝑚
∗ , then also 

𝑎 𝑋𝑡 = 𝒔(𝑋𝑡), 𝒄(𝑋𝑡)  𝑚𝑜𝑑 Φ𝑚 𝑋 , 𝑞  

Therefore 𝒄′ = 𝜅𝑡(𝒄) is an encryption of 
𝑎′ = 𝜅𝑡(𝑎) relative to key 𝒔′ = 𝜅𝑡(𝒔) 

Can publish key-switching matrix 𝑊[𝒔′ → 𝒔] to 
get back an encryption relative to 𝒔 
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Native plaintext space R2 = 𝑍2 𝑋 /Φ𝑚 

𝑎 ∈ 𝑅2 used to pack ℓ values 𝛼𝑗 ∈ 𝐺𝐹(2𝑑) 

sk is 𝑠 ∈ 𝑅𝑞, ctxt is a pair 𝑐0, 𝑐1 ∈ 𝑅𝑞
2 

Decryption is 𝑎:= 𝑀𝑆𝐵( 𝑐0, 𝑐1 , 𝑠, 1  ) 
Inner product over 𝑅𝑞  

Homomorphic addition, multiplication work 
element-size on the 𝛼𝑗’s 

Homomorphic automorphism to move 𝛼𝑗’s 
between the slots 
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