
FIELD-SWITCHING IN

HOMOMORPHIC ENCRYPTION

Craig Gentry

Shai Halevi

Chris Peikert

Nigel P. Smart

HE Over Cyclotomic Rings

 Denote the field 𝐾𝑚 = 𝑄(𝜁𝑚) ≅ 𝑄 𝑋 /(Φ𝑚 𝑋)
 Its ring of integers is 𝑅𝑚 = 𝑍(𝜁𝑚) ≅ 𝑍 𝑋 /(Φ𝑚 𝑋)

 Mod-𝑞 denoted 𝑅𝑚,𝑞 = 𝑅𝑚/𝑞𝑅𝑚 ≅ 𝑍𝑞 𝑋 /(Φ𝑚(𝑋))

 “Native plaintext space” is 𝑅𝑚,2

 Ciphertexts , secret-keys are vectors over 𝑅𝑚,𝑞

 𝒄 wrt 𝒔 encrypts 𝑎 if (for representatives in 𝑅𝑚) we

have 𝒔, 𝒄 = 𝑎 ⋅
𝑞

2
+ 𝑒 (𝑚𝑜𝑑 𝑞) for small 𝑒

 Decryption via 𝑎 ≔ 𝑀𝑆𝐵(𝒔, 𝒄)

 Using “appropriate” 𝑍-bases of 𝑅𝑚,2, 𝑅𝑚,𝑞

* Not exactly

*

*

*

HE Over Cyclotomic Rings

 “Native plaintexts” encode vectors of values

 𝑎 ∈ 𝑅𝑚,2 → 𝛼1…𝛼ℓ ∈ 𝐺𝐹 2𝑑
ℓ
 (more on that later)

 Homomorphic Operations

 Addition: 𝒄 ⊞ 𝒄′ encrypts 𝑎 + 𝑎′ ∈ 𝑅𝑚,2, encoding

(𝛼1 + 𝛼1
′ …𝛼ℓ + 𝛼ℓ

′)

 Multiplication: 𝒄 × 𝒄′ encrypts 𝑎 × 𝑎′ ∈ 𝑅𝑚,2, encoding

(𝛼1 × 𝛼1
′ …𝛼ℓ × 𝛼ℓ

′)

 Automorphism: 𝒄(𝑋𝑡) encrypts 𝑎(𝑋𝑡) ∈ 𝑅𝑚,2, encoding

some permutation of (𝛼1…𝛼ℓ)
 Relative to key 𝒔(𝑋𝑡)

HE Over Cyclotomic Rings

 Also a key-switching operation

 For any two 𝐬, 𝐬′ ∈ (𝑅𝑚,𝑞)
2 we can publish a

key-switching gadget 𝑊[𝒔 → 𝒔′]

 𝑊 used to translate valid 𝐜 wrt 𝐬 into 𝐜′ wrt 𝐬′

 𝐜, 𝐜′ encrypt the same plaintext
𝒔, 𝒄 = 𝒔′, 𝒄′ + 𝑒 (𝑚𝑜𝑑 𝑞)

 for some small 𝑒

How Large are 𝑚, 𝑞?

 Ciphertexts are “noisy” (for security)

 noise grows during homomorphic computation

 Decryption error if noise grows larger than 𝑞

Must set 𝑞 “much larger” than initial noise

Security relies on LWE-hardness with very

 large modulus/noise ratio

Dimension (𝑚) must be large to get hardness

 Asymptotically 𝑞 = 𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑘 ,𝑚 = Ω (𝑘)

 For realistic settings, 𝑞 ≈ 1000,𝑚 > 10000

Switching to Smaller 𝑚?

 As we compute, the noise grows

 Cipehrtexts have smaller modulus/noise ratio

 From a security perspective, it becomes permissible to

switch to smaller values of 𝑚

 How to do this?

 Not even clear what outcome we want here:

 Have 𝒄 wrt 𝒔 ∈ (𝑅𝑚,𝑞)
2, encrypting some 𝑎 ∈ 𝑅𝑚,2

 Want 𝒄′ wrt 𝒔′ ∈ (𝑅𝑚′,𝑞)
2 for 𝑚′ < 𝑚

 Encrypting 𝑎′ ∈ 𝑅𝑚′,2 ??

Ring-Switching: The Goal

 We cannot get 𝑎′ = 𝑎 since 𝑎′ ∈ 𝑅𝑚′,2, 𝑎 ∈ 𝑅𝑚,2

 We want 𝑎′ to be “related” to 𝑎

 𝑎 ∈ 𝑅𝑚,2 encodes 𝛼1…𝛼ℓ ∈ 𝐺𝐹 2𝑑
ℓ

 𝑎′ ∈ 𝑅𝑚′,2 encodes 𝛼1
′ …𝛼ℓ′

′ ∈ 𝐺𝐹 2𝑑
′ ℓ′

 May want 𝑎′ to encode a subset of the 𝛼𝑖’s?

 E.g., the first ℓ′ of them

 Not always possible, only if 𝑑′ = 𝑑

 What relations between the 𝛼′𝑗 , 𝛼𝑖’s are possible?

Prior Work

 A limited ring-switching technique was described in

[BGV’12]

 Only for 𝑚 = 2𝑛, 𝑚′ = 2𝑛−1

 Transforms big-ring 𝐜 into small-ring 𝒄𝟏
′ , 𝒄𝟐

′

s.t. 𝑎 (encrypted in 𝐜) can be recovered from

𝑎1
′ , 𝑎2

′ (encrypted in 𝒄𝟏
′ , 𝒄𝟐

′).

 Used only for bootstrapping

Our Transformation: Overview

 Work for any 𝑚,𝑚′ as long as 𝑚′|𝑚

 𝐜 wrt 𝐬 ∈ (𝑅𝑚,𝑞)
2 𝐜′ wrt 𝐬′ ∈ (𝑅𝑚′,𝑞)

2

 𝐜, 𝐜′ encrypt 𝑎, 𝑎′, that encode vectors:

 𝒄 → 𝛼𝑖 ∈ 𝐺𝐹 2𝑑
ℓ
, 𝐜′ → 𝛼𝑗

′ ∈ 𝐺𝐹 2𝑑
′ ℓ′

 Necessarily 𝑑′|𝑑, so 𝐺𝐹 2𝑑
′

 a subfield of 𝐺𝐹(2𝑑)

 Each 𝛼𝑗
′ is a 𝐺𝐹 2𝑑

′
-linear function of some 𝛼𝑖 ‘s

 We can choose the linear functions, but not the subset of 𝛼𝑖‘s
that correspond to each 𝛼𝑗

′

 If 𝑑′ = 𝑑, can use projections (so 𝛼𝑗
′’s a subset of 𝛼𝑖’s)

Our Transformation: Overview

Denote 𝐾 = 𝐾𝑚, 𝑅 = 𝑅𝑚, 𝐾
′ = 𝐾𝑚′ , 𝑅′ = 𝑅𝑚′

1. Key-switching to map 𝒄 wrt 𝒔 𝒄′′ wrt 𝒔′

 𝒔 ∈ 𝑅𝑞
2 and 𝒔′ ∈ 𝑅𝑞

′ 2 ⊂ 𝑅𝑞
2

 𝒄′′ = (𝑐0
′′, 𝑐1

′′) over the big field, wrt subfield key

2. Compute a small 𝑟 ∈ 𝑅𝑞 that depends only on the

desired linear functions

3. Apply the trace function, 𝑐𝑖
′ = Tr𝐾/𝐾′ 𝑟 ⋅ 𝑐𝑖

′′

4. Output 𝒄′ = (𝑐0
′ , 𝑐1

′)

Algebra

Geometry of 𝐾

 Use canonical-embedding to associate 𝑢 ∈ 𝐾 with a

𝜙(𝑚)-vector of complex numbers

 Thinking of 𝑢 = 𝑢(𝑋) as a polynomial, associate 𝑢 with

the vector 𝜎 𝑢 = 𝑢 𝜌𝑖
𝑖∈𝑍𝑚

∗

 𝜌 = 𝑒2𝜋𝑖/𝑚, the principal complex 𝑚’th root of unity

 E.g., if 𝑢 ∈ 𝑄 ⊂ 𝐾 then 𝜎 𝑢 = 𝑢, 𝑢, … , 𝑢

 We can talk about the “size of 𝑢”

 say the 𝑙2 or 𝑙∞ norm of 𝜎 𝑢

 For decryption, the “noise element” must be ≪ 𝑞

Geometry of 𝐾,𝐾′

 𝐾 can be expressed as a vector-space over 𝐾′

 Similarly 𝑅 over 𝑅′, 𝑅𝑞 over 𝑅𝑞
′ , etc.

 Every 𝑅′ -basis 𝐵 induces a transformation

 𝑇𝐵: coefficients in 𝑅′ ↦ element of 𝑅

 With canonical embedding on both sides, we have

a 𝐶-linear transformation 𝑇𝐵: 𝐶
𝜙(𝑚) → 𝐶𝜙(𝑚)

 We want a “good basis”, where 𝑇𝐵 is “short”

and “nearly orthogonal”

Geometry of 𝐾,𝐾′

 Lemma 1: There exists 𝑅′-basis 𝐵 of R for which all

the singular values of 𝑇𝐵 are nearly the same.

 Specifically 𝑠1 𝑇 = 𝑠𝑛 𝑇 ⋅ 𝑓 where

𝑓 ≤
𝑟𝑎𝑑 𝑚

𝑟𝑎𝑑 𝑚′ = ∏ primes that divide 𝑚 but not 𝑚′

 The proof follows techniques from [LPR13],

the basis 𝐵 is essentially a tensor of DFT matrices

The Trace Function

 For 𝑢 ∈ 𝐾, Tr 𝑢 = 𝜎 𝑢 𝑖𝑖∈𝑍𝑚
∗ ∈ 𝑄

 By definition: if 𝑢 is small then so is Tr 𝑢

 Tr: 𝐾 → 𝑄 is 𝑄−linear

 𝐿: 𝐾 → 𝑄 is 𝑄-linear if ∀𝑢, 𝑣 ∈ 𝐾, 𝑞 ∈ 𝑄,

𝐿 𝑢 + 𝐿 𝑣 = 𝐿(𝑢 + 𝑣) and 𝐿 𝑞 ⋅ 𝑢 = 𝑞 ⋅ 𝐿(𝑢)

 The trace is a “universal” 𝑄-linear function:

 For every 𝑄-linear function 𝐿 there exists 𝜅 ∈ 𝐾 such

that 𝐿 𝑢 = Tr 𝜅 ⋅ 𝑢 ∀𝑢 ∈ 𝐾

The Trace Function

 The trace Implies also a 𝑍-linear map Tr: 𝑅 → 𝑍,

and 𝑍𝑞-linear map Tr: 𝑅𝑞 → 𝑍𝑞

 Every 𝑍-linear map L ∶ 𝑅 → 𝑍 can be written as

𝐿 𝑎 = Tr 𝜅 ⋅ 𝑎

 But 𝜅 need not be in 𝑅

 More on that later

The Intermediate Trace Function

 𝑇𝑟𝐾/𝐾′: 𝐾 → 𝐾′ when 𝐾 is an extension of 𝐾′

 Satisfies 𝑇𝑟𝐾/𝑄 = 𝑇𝑟𝐾/𝐾′ ∘ 𝑇𝑟𝐾′/𝑄

 Lemma 2: if 𝑢 is small then so is Tr𝐾/𝐾′ 𝑢

 Less trivial than for Tr𝐾/𝑄 but still true

 Tr𝐾/𝐾′ is a “universal” 𝐾′-linear function:

 Tr𝐾/𝐾′: 𝐾 → 𝐾′ is 𝐾′−linear

 For every 𝐾′-linear function 𝐿 there exists 𝜅 ∈ 𝐾𝑚 such

that 𝐿 𝑢 = TrK/K′ 𝜅 ⋅ 𝑢 ∀𝑢 ∈ 𝐾𝑚

 Similarly implies 𝑅′-linear map 𝑇𝑟𝐾/𝐾′: 𝑅 → 𝑅′ and

𝑅𝑞
′ -linear map 𝑇𝑟𝐾/𝐾′: 𝑅𝑞 → 𝑅𝑞

′

Some Complications

 Often we get Tr𝐾 𝐾′ 𝑅 ⊆ 𝑅′

 Also for many linear functions we get

𝐿 𝑢 = TrK/K′ 𝜅 ⋅ 𝑢 where 𝜅 is not in 𝑅

 In our setting this will cause problems when we

apply the trace to ciphertext elements

 That’s (one reason) why ciphertexts are not really

vectors over R

 Hence the *‘s throughout the slides

The Dual of 𝑅

 Instead of 𝑅, ciphertext are vectors over the dual

𝑅∨ = {𝑎 ∈ 𝐾: ∀ 𝑟 ∈ 𝑅, Tr 𝑎𝑟 ∈ 𝑍}

 R∨ = R/t, R′∨ = R′/t′ for some t ∈ 𝑅, 𝑡′ ∈ 𝑅′

 We have Tr𝐾 𝐾′ R∨ = 𝑅′∨

 Also every R′-linear 𝐿: 𝑅∨ → 𝑅′∨ can be written as

𝐿 𝑎 = 𝑇𝑟𝐾/𝐾′(𝑟 ⋅ 𝑎) for some 𝑟 ∈ 𝑅

 In the rest of this talk we ignore this point, and pretend

that everything is over 𝑅

Prime Splitting

 The integer 2 splits over 𝑅 as 2 = ∏ 𝒑𝑖
𝑒

𝑖
 𝑖 ranges over 𝐺 = 𝑍𝑚

∗ /(2)

 𝒑𝑖 is generated by (2, 𝐹𝑖 𝑋 = ∏ 𝑋 − 𝜁𝑚
𝑖⋅2𝑗

𝑗)

 In this talk we assume 𝑒=1 (i.e., 𝑚 is odd)

 ℓ = |𝐺| prime ideals, each 𝑅/𝒑𝑖 ≅ 𝐺𝐹(2𝑑)

 R2 = 𝑅/(2) ≅⊕𝑖 𝑅/𝒑𝑖 ≅⊕𝑖 𝐺𝐹(2
𝑑)

 Using CRT, each 𝑎 ∈ 𝑅2 encodes the vector

(𝑎 𝑚𝑜𝑑 𝒑𝑖1
𝛼1

, … , 𝑎 𝑚𝑜𝑑 𝒑𝑖ℓ
𝛼ℓ

) ∈ 𝐺𝐹 2𝑑
ℓ

Prime Splitting

 Similarly 2 splits over 𝑅′ as 2 = ∏ 𝒑𝑗
′ 𝑒

′

𝑗

 Again we assume 𝑒′ = 1

 Using CRT, each 𝑎′ ∈ 𝑅2
′ encodes the vector

(𝑎′ 𝑚𝑜𝑑 𝒑𝑗1
′

𝛼1
′

, … , 𝑎′ 𝑚𝑜𝑑 𝒑𝑗
ℓ′
′

𝛼ℓ
′

) ∈ 𝐺𝐹 2𝑑
′ ℓ′

 When 𝑚′|𝑚 then also 𝑑′|𝑑, ℓ′|ℓ, and each 𝒑𝒋
′ split

over 𝑅 as a product of some of the 𝒑𝑖 ’s

Prime Splitting

 Example for 𝑚 = 91,𝑚′ = 7

2

𝒑1
′ 𝒑3

′

𝒑22 𝒑15 𝒑1 𝒑31 𝒑17 𝒑3

𝑍

𝑅′

𝑅

⊆

⊆

𝑑 = 12

ℓ = 6

𝑑′ = 3
ℓ′ = 2

Lie over 2

Lie over 𝑝1
′ Lie over 𝑝3

′

Plaintext-Slot Representation

 Recall that 𝑅/𝒑𝑖 ≅ 𝐺𝐹(2𝑑) for all the 𝒑𝑖’s

 But the isomorphisms are not unique

 To fix the isomorphisms:

 Fix a primitive 𝑚-th root of unity 𝜔 ∈ 𝐺𝐹(2𝑑)

 Fix representatives 𝑢𝑖 ∈ 𝑍𝑚
∗ for all 𝑖 ∈ 𝑍𝑚

∗ /(2)

 ℎ𝑖: 𝑅 𝒑𝑖 → 𝐺𝐹(2𝑑) defined via ℎ𝑖 𝜁𝑚 = 𝜔𝑢𝑖

 Same for isomorphisms 𝑅′/𝒑𝑗
′ ≅ 𝐺𝐹(2𝑑

′
)

 Define ℎ𝑗
′: 𝑅′ 𝒑𝑗

′ → 𝐺𝐹(2𝑑
′
) by fixing 𝜌′ and 𝑢𝑗

′

Plaintext-Slot Representation

 Making the ℎ𝑖’s and ℎ𝑗
′‘s “consistent”

 Fix 𝜔 ∈ 𝐺𝐹(2𝑑) and set 𝜔′ = 𝜌𝑚/𝑚′
∈ 𝐺𝐹(2𝑑

′
)

 Fix 𝑢𝑗
′ ∈ 𝑗 ⋅ 2 ⊂ 𝑍𝑚′

∗
 ∀𝑗, then ∀ 𝒑𝑖 that lies over 𝒑𝑗

′ ,

choose 𝑢𝑖 ∈ 𝑖 ⋅ (2) s.t. 𝑢𝑖 = 𝑢𝑗
′ mod 𝑚′

 Fact: if 𝒑𝑖 lies over 𝒑𝑗
′ and 𝑟′ ∈ 𝑅′ ⊂ 𝑅, then

ℎ𝑖 𝑟
′𝑚𝑜𝑑 𝒑𝑖 = ℎ𝑗

′ 𝑟′𝑚𝑜𝑑 𝒑𝑗
′ ∈ 𝐺𝐹(2𝑑

′
)

 In words: for a sub-ring plaintext, the slots mod 𝒑𝑗
′ and

all the 𝒑𝑖’s lie over it, hold the same value

Plaintext-Slot Representation

 Lemma 3: ∀ collection of 𝐺𝐹(2𝑑′)-linear functions

𝐿𝑗: 𝐺𝐹 2𝑑
ℓ

ℓ′ → 𝐺𝐹 2𝑑
′

𝑗∈𝑍
𝑚′
∗ /2

∃ a unique 𝑅2
′ -linear function 𝐿: 𝑅2 → 𝑅2

′ s.t.

 ℎ𝑗
′(𝑎′mod 𝒑𝑗

′) = 𝐿𝑗((ℎ𝑖 𝑎 𝑚𝑜𝑑 𝒑𝑖 𝑖))

 holds ∀ 𝑎 ∈ 𝑅2 and 𝑎′ = 𝐿(𝑎), and ∀ 𝑗

 The 𝑖’s range over all the 𝒑𝑖’s that lie over 𝒑𝑗
′

Illustration of Lemma 3

 ∃𝐿: 𝑅2 → 𝑅2
′ s.t. ∀ 𝑎 ∈ 𝑅2 and 𝑎′ = 𝐿 𝑎 ∈ 𝑅2

′

 ℎ1
′ 𝑎′ = 𝐿1 ℎ1 𝑎 , ℎ15 𝑎 , ℎ22 𝑎

 ℎ3
′ 𝑎′ = 𝐿2 ℎ3 𝑎 , ℎ17 𝑎 , ℎ31 𝑎

 Can express 𝐿 𝑎 = 𝑇𝑟𝐾/𝐾′(𝑟 ⋅ 𝑎) for some 𝑟 ∈ 𝑅2

𝒑1
′ 𝒑3

′

𝒑22 𝒑15 𝒑1 𝒑31 𝒑17 𝒑3

𝑅′

𝑅

⊆

(𝑑 = 12, ℓ = 6)

(𝑑′ = 3, ℓ′ = 2)

𝐿1: 𝐺𝐹 212 3 → 𝐺𝐹(23) 𝐿3: 𝐺𝐹 212 3 → 𝐺𝐹(23)

* Not exactly

*

The Transformation

Step 1, Key Switching

 Let 𝒔 ∈ 𝑅𝑞
2, 𝒔′ ∈ 𝑅𝑞

′ 2 ⊂ 𝑅𝑞
2 (chosen at keygen)

 Publish a key-switching matrix 𝑊[𝒔 → 𝒔′]

 Given ctxt 𝒄 wrt 𝒔, use W to get 𝒄′′ wrt 𝒔′

 Just plain key-switching in the big ring

 𝒄′′ still over the big ring, but wrt a sub-ring key

 𝒄′′ encrypts the same 𝑅2-element as 𝒄

Security of Key-Swicthing

 Security of usual big-ring key-switching relies on the

secret 𝒔′ being drawn from 𝑅𝑞

 Then 𝑊 constrains only LWE-instance over 𝑅𝑞

 What can we say when it is drawn from 𝑅𝑞
′ ?

 We devise LWE instances over 𝑅𝑞 with secret from

𝑅𝑞
′ , with security relying on LWE in 𝑅𝑞

′

 Instead of one small error element in 𝑅𝑞 , choose many

small elements in 𝑅𝑞
′ , use an 𝑅𝑞

′ -basis of 𝑅𝑞 to combine

them into a single error element in 𝑅𝑞

𝑅𝑞-LWE With Secret in 𝑅𝑞
′

 Let 𝐵 = (𝛽1, … , 𝛽𝑛) be any 𝑅𝑞
′ -basis of 𝑅𝑞

 Given the LWE secret 𝑠′ ∈ 𝑅𝑞
′ ⊂ 𝑅𝑞

 Choose uniform 𝑎 ← 𝑅𝑞 and small 𝑒1
′ , … , 𝑒𝑛

′ ← 𝑅𝑞
′

 Set 𝑒 = 𝑒𝑖
′𝛽𝑖𝑖 ∈ 𝑅𝑞 and output (𝑎, 𝑏 = 𝑎𝑠′ + 𝑒)

 If the basis B is “good” (short, orthogonal) then 𝑒 is

not much larger than the 𝑒𝑖
′’s

 This is where we use Lemma 1 (∃ good basis)

𝑅𝑞-LWE With Secret in 𝑅𝑞
′

 Theorem: If decision-LWE is hard in 𝑅𝑞
′ , then (𝑎, 𝑏)

is indistinguishable from uniform in 𝑅𝑞
2

 Proof:

 We can consider 𝑎 = 𝑎𝑖
′𝛽𝑖𝑖 for uniform 𝑎𝑖

′ ← 𝑅𝑞
′

 Induces the same uniform distribution on 𝑎

 Then we would get 𝑏 = (𝑎𝑖
′𝑠′ + 𝑒𝑖

′)𝛽𝑖𝑖 .

 If the (𝑎𝑖
′𝑠′ + 𝑒𝑖

′) were uniform in 𝑅𝑞
′ , then 𝑏 would be

uniform in 𝑅𝑞 . □

Steps 2,3: Ring Switching

 𝒄′′ encrypts 𝑎 ∈ 𝑅2 wrt 𝒔′
 𝑎 encodes a vector 𝜶 = 𝛼𝑖 𝑖 ∈ 𝐺𝐹 2𝑑

ℓ

 We view it as 𝜶 = (𝜶1, … , 𝜶ℓ′) ∈ 𝐺𝐹 2𝑑
ℓ/ℓ′ ℓ′

 ℓ′ target functions, 𝐿𝑗: 𝐺𝐹 2𝑑
ℓ/ℓ′

→ 𝐺𝐹(2𝑑
′
)

 Want small-ring ciphertext 𝒄′ encrypting 𝑎 ∈ 𝑅2
′ that

encodes 𝜶′ = 𝛼1
′ , … , 𝛼ℓ′

′ ∈ 𝐺𝐹 2𝑑
′ ℓ′

 For each 𝑗, 𝛼𝑗
′ = 𝐿𝑗(𝜶𝑗)

Steps 2,3: Ring Switching

 By Lemma 2, ∃𝐿: 𝑅2 → 𝑅2
′ that induces the 𝐿𝑗’s

 Expressed as 𝐿 𝑎 = 𝑇𝑟𝐾/𝐾′(𝑟 ⋅ 𝑎) for 𝑟 ∈ 𝑅2
′

 We identify 𝑟 with a short representative in 𝑅′

 One must exists since 2 is “short”

 Thus identify 𝐿 with 𝐿 𝑎 = 𝑇𝑟𝐾/𝐾′(𝑟 ⋅ 𝑎) over 𝑅

 Further identify 𝑟 as a representative of 𝑟 ∈ 𝑅𝑞
′

 Apply the trace, 𝑐𝑖
′ = 𝑇𝑟𝐾/𝐾′(𝑟 ⋅ 𝑐𝑖

′′)

 Recall that 𝒄′′ is valid wrt 𝒔′ ∈ 𝑅𝑞
′ ⊂ 𝑅𝑞

* Not exactly

*

Correctness

 Recall 𝒔′, 𝒄′′ = 𝑘 ⋅ 𝑞 + 𝑎 ⋅
𝑞

2
+ 𝑒 over 𝐾

 For some 𝑘, 𝑒 ∈ 𝑅 (with 𝑒 small) and 𝐬′ over 𝑅′

 Thus we have the equalities (over 𝐾):

 𝒔′, 𝒄′ = 𝒔′, 𝑇𝑟𝐾/𝐾′ (𝑟 ⋅ 𝒄′′) = 𝑇𝑟𝐾/𝐾′ 𝑟 ⋅ 𝒔′, 𝒄′′

= 𝐿 𝑞 ⋅ 𝑘 + 𝑎 ⋅
𝑞

2
+ 𝑒 = 𝐿 𝑘 ⋅ 𝑞 + 𝐿 𝑎 ⋅

𝑞

2
+ 𝐿 𝑒

= 𝑘′ ⋅ 𝑞 + 𝑎′ ⋅
𝑞

2
+ 𝑒′

 𝑎′ encodes the 𝛼𝑗
′’s that we want

Correctness

• We have 𝒔′, 𝒄′ = 𝑘′ ⋅ 𝑞 + 𝑎′ ⋅
𝑞

2
+ 𝑒′

 This looks like a valid encryption of 𝑎′

 It remains to show that 𝑒′ is short

 𝑒′ = 𝐿 𝑒 = 𝑇𝑟𝐾/𝐾′(𝑟 ⋅ 𝑒)

 𝑒 is short (from the input), 𝑟 is short (reduced mod 2)

 So 𝑟 ⋅ 𝑒 is short

 By Lemma 3 also 𝑇𝑟𝐾/𝐾′(𝑟 ⋅ 𝑒) is short

Conclusions

 We have a general ring-switching technique

 Converts 𝒄 over 𝑅𝑚 to 𝒄′ over 𝑅𝑚′ for 𝑚′|𝑚

 The plaintext slots in 𝒄′ can contain any linear functions

of the slots in 𝒄

 A 𝒄′-slot is a function of the 𝒄-slots that lie above it

 We may choose projection functions to have 𝒄′ contain

subset of the slots of 𝒄

 Lets us to speed up computation by switching to a

smaller ring

Epilog: The [AP13] Work

Alperin-Sheriff & Peikert described a clever use of

ring-switching for efficient homomorphic computation

of DFT-like transformations:

1. Decompose it to an FFT-like network of “local”

linear functions

2. Use ring-switching for each level

3. Then switch back up before the next level

Yields fastest bootstrapping procedure to date

