FIELD-SWITCHING IN HOMOMORPHIC ENCRYPTION

Craig Gentry Shai Halevi Chris Peikert Nigel P. Smart

HE Over Cyclotomic Rings

- □ Denote the field $K_m = Q(\zeta_m) \cong Q[X]/(\Phi_m(X))$ □ Its ring of integers is $R_m = Z(\zeta_m) \cong Z[X]/(\Phi_m(X))$ □ Mod-q denoted $R_{m,q} = R_m/qR_m \cong Z_q[X]/(\Phi_m(X))$
- \square "Native plaintext space" is $R_{m,2}$
- \Box Ciphertexts*, secret-keys are vectors over $R_{m,q}$
- C wrt S encrypts a if (for representatives in R_m) we have (s, c) = a ⋅ ^q/₂ + e (mod q)^{*} for small e
 Decryption via a ≔ MSB((s, c))^{*}
 - **u** Using "appropriate" Z-bases of $R_{m,2}$, $R_{m,q}$

HE Over Cyclotomic Rings

"Native plaintexts" encode vectors of values

 $\square a \in R_{m,2} \rightarrow (\alpha_1 \dots \alpha_\ell) \in GF(2^d)^\ell \text{ (more on that later)}$

Homomorphic Operations

- Addition: $c \boxplus c'$ encrypts $a + a' \in R_{m,2}$, encoding $(\alpha_1 + \alpha'_1 \dots \alpha_\ell + \alpha'_\ell)$
- Multiplication: $\boldsymbol{c} \boxtimes \boldsymbol{c}'$ encrypts $a \times a' \in R_{m,2}$, encoding $(\alpha_1 \times \alpha'_1 \dots \alpha_\ell \times \alpha'_\ell)$
- Automorphism: $c(X^t)$ encrypts $a(X^t) \in R_{m,2}$, encoding some permutation of $(\alpha_1 \dots \alpha_\ell)$

Relative to key $s(X^t)$

HE Over Cyclotomic Rings

- Also a key-switching operation
- □ For any two $\mathbf{s}, \mathbf{s}' \in (R_{m,q})^2$ we can publish a key-switching gadget $W[\mathbf{s} \rightarrow \mathbf{s}']$
- W used to translate valid c wrt s into c' wrt s'
 c, c' encrypt the same plaintext
 (s, c) = (s', c') + e (mod q)

for some small e

How Large are *m*, *q*?

- Ciphertexts are "noisy" (for security)
 - noise grows during homomorphic computation
 - \blacksquare Decryption error if noise grows larger than q
- \rightarrow Must set q "much larger" than initial noise
- Security relies on LWE-hardness with very large modulus/noise ratio
- \rightarrow Dimension (m) must be large to get hardness
- □ Asymptotically $|q| = polylog(k), m = \widetilde{\Omega}(k)$
 - \blacksquare For realistic settings, $|q|\approx 1000, m>10000$

Switching to Smaller *m*?

- □ As we compute, the noise grows
 - Cipehrtexts have smaller modulus/noise ratio
 - From a security perspective, it becomes permissible to switch to smaller values of m
- How to do this?
- Not even clear what outcome we want here:
 Have *c* wrt *s* ∈ (*R*_{m,q})², encrypting some *a* ∈ *R*_{m,2}
 Want *c'* wrt *s'* ∈ (*R*_{m',q})² for *m'* < *m*Encrypting *a'* ∈ *R*_{m',2} ??

Ring-Switching: The Goal

- □ We cannot get a' = a since $a' \in R_{m',2}$, $a \in R_{m,2}$
- We want a' to be "related" to a■ $a \in R_{m,2}$ encodes $(\alpha_1 \dots \alpha_\ell) \in GF(2^d)^\ell$ ■ $a' \in R_{m',2}$ encodes $(\alpha'_1 \dots \alpha'_{\ell'}) \in GF(2^{d'})^{\ell'}$
- □ May want a' to encode a subset of the a_i's?
 □ E.g., the first l' of them
 - Not always possible, only if d' = d

 \square What relations between the α'_i , α_i 's are possible?

Prior Work

- A limited ring-switching technique was described in [BGV'12]
 - Only for $m = 2^n$, $m' = 2^{n-1}$
- □ Transforms big-ring **c** into small-ring c'_1, c'_2 s.t. *a* (encrypted in **c**) can be recovered from a'_1, a'_2 (encrypted in c'_1, c'_2).
- Used only for bootstrapping

Our Transformation: Overview

- \square Work for any m, m' as long as m' | m□ **c** wrt **s** ∈ $(R_{m,q})^2 \rightarrow \mathbf{c}'$ wrt **s**' ∈ $(R_{m',q})^2$ \Box **c**, **c**' encrypt *a*, *a*', that encode vectors: $\Box \boldsymbol{c} \to (\alpha_i) \in GF(2^d)^{\ell}, \, \boldsymbol{c}' \to (\alpha_i') \in GF(2^{d'})^{\ell'}$ • Necessarily d'|d, so $GF(2^{d'})$ a subfield of $GF(2^d)$ □ Each α'_i is a $GF(2^{d'})$ -linear function of some α_i 's \square We can choose the linear functions, but not the subset of α_i 's that correspond to each α'_i
 - If d' = d, can use projections (so α'_j 's a subset of α_i 's)

Our Transformation: Overview

Denote $K = K_m$, $R = R_m$, $K' = K_{m'}$, $R' = R_{m'}$

1. Key-switching to map c wrt $s \rightarrow c''$ wrt s'

•
$$s \in R_q^2$$
 and $s' \in {R'_q}^2 \subset R_q^2$

•
$$c'' = (c''_0, c''_1)$$
 over the big field, wrt subfield key

- 2. Compute a small $r \in R_q$ that depends only on the desired linear functions
- 3. Apply the trace function, $c'_i = \operatorname{Tr}_{K/K'}(r \cdot c''_i)$
- 4. Output $c' = (c'_0, c'_1)$

Geometry of *K*

- Use canonical-embedding to associate $u \in K$ with a $\phi(m)$ -vector of complex numbers
 - Thinking of u = u(X) as a polynomial, associate u with the vector $\sigma(u) = \left(u(\rho^i)\right)_{i \in Z_m^*}$

• $\rho = e^{2\pi i/m}$, the principal complex *m*'th root of unity • E.g., if $u \in Q \subset K$ then $\sigma(u) = (u, u, ..., u)$

- \square We can talk about the "size of u"
 - \blacksquare say the l_2 or l_∞ norm of $\sigma(u)$
 - $f \square$ For decryption, the "noise element" must be $\ll q$

Geometry of K, K'

 $\square K$ can be expressed as a vector-space over K'**D** Similarly R over R', R_q over R'_q , etc. \square Every R' -basis B induces a transformation T_R : coefficients in $R' \mapsto$ element of R With canonical embedding on both sides, we have a *C*-linear transformation $T_R: C^{\phi(m)} \to C^{\phi(m)}$ \square We want a "good basis", where T_B is "short" and "nearly orthogonal"

Geometry of K, K'

Lemma 1: There exists R'-basis B of R for which all the singular values of T_B are nearly the same.
 Specifically s₁(T) = s_n(T) · √f where f ≤ rad(m)/rad(m') = ∏ primes that divide m but not m'
 The proof follows techniques from [LPR13],

the basis B is essentially a tensor of DFT matrices

The Trace Function

$$\Box \text{ For } u \in K, \operatorname{Tr}(u) = \sum_{i \in Z_m^*} \sigma(u)_i \in Q$$

D By definition: if u is small then so is Tr(u)

$$\Box \operatorname{Tr}: K \to Q \text{ is } Q - \mathsf{linear}$$

■
$$L: K \to Q$$
 is Q-linear if $\forall u, v \in K, q \in Q$,
 $L(u) + L(v) = L(u + v)$ and $L(q \cdot u) = q \cdot L(u)$

 \Box The trace is a "universal" Q-linear function:

■ For every *Q*-linear function *L* there exists $\kappa \in K$ such that $L(u) = Tr(\kappa \cdot u) \forall u \in K$

The Trace Function

- □ The trace Implies also a Z-linear map $Tr: R \to Z$, and Z_q -linear map $Tr: R_q \to Z_q$
- □ Every Z-linear map $L : R \to Z$ can be written as $L(a) = Tr(\kappa \cdot a)$
 - **D** But κ need not be in R
 - More on that later

The Intermediate Trace Function

Similarly implies R'-linear map $Tr_{K/K'}: R \to R'$ and R'_q -linear map $Tr_{K/K'}: R_q \to R'_q$

Some Complications

- □ Often we get $\operatorname{Tr}_{K/K'}(R) \subsetneq R'$
- □ Also for many linear functions we get $L(u) = \text{Tr}_{K/K'}(\kappa \cdot u)$ where κ is not in R
- In our setting this will cause problems when we apply the trace to ciphertext elements
 - That's (one reason) why ciphertexts are not really vectors over R
 - Hence the *'s throughout the slides

The Dual of R

- Instead of R, ciphertext are vectors over the dual R[∨] = {a ∈ K: ∀ r ∈ R, Tr(ar) ∈ Z}
 R[∨] = R/t, R'[∨] = R'/t' for some t ∈ R, t' ∈ R'
 We have Tr_{K/K'}(R[∨]) = R'[∨]
 Also every R'-linear L: R[∨] → R'[∨] can be written as L(a) = Tr_{K/K'}(r ⋅ a) for some r ∈ R
- In the rest of this talk we ignore this point, and pretend that everything is over R

Prime Splitting

 \square The integer 2 splits over R as $2 = \prod_i p_i^e$ i ranges over $G = Z_m^*/(2)$ **•** p_i is generated by $(2, F_i(X) = \prod_j (X - \zeta_m^{i \cdot 2^j}))$ \square In this talk we assume e=1 (i.e., m is odd) $\square \ell = |G|$ prime ideals, each $R/p_i \cong GF(2^d)$ $\square \mathbf{R}_2 = R/(2) \cong \bigoplus_i R/\mathbf{p}_i \cong \bigoplus_i GF(2^d)$ \Box Using CRT, each $a \in R_2$ encodes the vector $(\underbrace{a \mod p_{i_1}}, \dots, \underbrace{a \mod p_{i_\ell}}) \in GF(2^d)^\ell$ α_1 α_{ℓ}

Prime Splitting

$$\square$$
 Similarly 2 splits over R' as $2 = \prod_j {m p'_j}^{e'}$

- Again we assume e' = 1
- Using CRT, each $a' \in R'_2$ encodes the vector

$$(\underbrace{a' \bmod p'_{j_1}}_{\alpha'_1}, \dots, \underbrace{a' \bmod p'_{j_{\ell'}}}_{\alpha'_{\ell}}) \in GF(2^{d'})^{\ell'}$$

When m'|m then also d'|d, $\ell'|\ell$, and each p'_j split over R as a product of some of the p_i 's

Prime Splitting

 \square Example for m = 91, m' = 7

Plaintext-Slot Representation

 \square Recall that $R/p_i \cong GF(2^d)$ for all the p_i 's

But the isomorphisms are not unique

- □ To fix the isomorphisms:
 - **The Intermetting Provided Formula 1** Fix a primitive m-th root of unity $\omega \in GF(2^d)$
 - **Theorem 5** Fix representatives $u_i \in Z_m^*$ for all $i \in Z_m^*/(2)$
 - $\square h_i: R/p_i \to GF(2^d) \text{ defined via } h_i(\zeta_m) = \omega^{u_i}$
- □ Same for isomorphisms $R'/p'_j \cong GF(2^{d'})$
 - Define $h'_j: R'/p'_j \to GF(2^{d'})$ by fixing ρ' and u'_j

Plaintext-Slot Representation

- \square Making the h_i 's and h'_i 's "consistent"
 - Fix $\omega \in GF(2^d)$ and set $\omega' = \rho^{m/m'} \in GF(2^{d'})$ ■ Fix $u'_j \in j \cdot (2) \subset Z^*_{m'} \forall j$, then $\forall p_i$ that lies over p'_j , choose $u_i \in i \cdot (2)$ s.t. $u_i = u'_j \mod m'$
- Fact: if p_i lies over p'_j and $r' \in R' \subset R$, then $h_i(r'mod p_i) = h'_j(r'mod p'_j) \in GF(2^{d'})$ ■ In words: for a sub-ring plaintext, the slots mod p'_j and
 - all the p_i 's lie over it, hold the same value

Plaintext-Slot Representation

□ Lemma 3: \forall collection of $GF(2^{d'})$ -linear functions $\left\{L_j: GF(2^d)^{\frac{\ell}{\ell'}} \rightarrow GF(2^{d'})\right\}_{j \in Z_{m'}^*/2}$ ∃ a unique R'_2 -linear function $L: R_2 \rightarrow R'_2$ s.t. $h'_j(a' \mod p'_j) = L_j((h_i(a \mod p_i)_i))$ holds $\forall a \in R_2$ and a' = L(a), and $\forall j$ □ The *i*'s range over all the p_i 's that lie over p'_j

Illustration of Lemma 3

□ ∃L: $R_2 \to R'_2$ s.t. $\forall a \in R_2$ and $a' = L(a) \in R'_2$ □ $h'_1(a') = L_1(h_1(a), h_{15}(a), h_{22}(a))$ □ $h'_3(a') = L_2(h_3(a), h_{17}(a), h_{31}(a))$

□ Can express $L(a) = Tr_{K/K'}(r \cdot a)$ for some $r \in R_2^*$

* Not exactly

The Transformation

Step 1, Key Switching

□ Let
$$s \in R_q^2$$
, $s' \in {R'_q}^2 \subset R_q^2$ (chosen at keygen)

- \square Publish a key-switching matrix $W[s \rightarrow s']$
- Given ctxt c wrt s, use W to get c'' wrt s'

Just plain key-switching in the big ring

- $\Box c''$ still over the big ring, but wrt a sub-ring key
- $\square c''$ encrypts the same R_2 -element as c

Security of Key-Swicthing

- Security of usual big-ring key-switching relies on the secret s' being drawn from R_q
 - \blacksquare Then W constrains only LWE-instance over R_q
 - What can we say when it is drawn from R'_q ?
- □ We devise LWE instances over R_q with secret from R'_q , with security relying on LWE in R'_q
 - Instead of one small error element in R_q, choose many small elements in R'_q, use an R'_q-basis of R_q to combine them into a single error element in R_q

R_q -LWE With Secret in R'_q

$$\square$$
 Let $B = (\beta_1, ..., \beta_n)$ be any R'_q -basis of R_q

- $\Box \text{ Given the LWE secret } s' \in R'_q \subset R_q$
 - **Choose uniform** $a \leftarrow R_q$ and small $e'_1, \dots, e'_n \leftarrow R'_q$
 - Set $e = \sum_i e'_i \beta_i \in R_q$ and output (a, b = as' + e)
- If the basis B is "good" (short, orthogonal) then e is not much larger than the e''s

■ This is where we use Lemma 1 (∃ good basis)

R_q -LWE With Secret in R'_q

□ <u>Theorem</u>: If decision-LWE is hard in R'_q , then (a, b) is indistinguishable from uniform in R^2_q

Proof:

• We can consider $\mathbf{a} = \sum_{i} a'_{i} \beta_{i}$ for uniform $a'_{i} \leftarrow R'_{q}$

Induces the same uniform distribution on a

Then we would get b = Σ_i(a'_is' + e'_i)β_i.
If the (a'_is' + e'_i) were uniform in R'_q, then b would be uniform in R_q.

Steps 2,3: Ring Switching

Steps 2,3: Ring Switching

- \square By Lemma 2, $\exists L: R_2 \rightarrow R'_2$ that induces the L_j 's
 - Expressed as $L(a) = Tr_{K/K'}(r \cdot a)$ for $r \in {R'_2}^*$
 - \blacksquare We identify r with a short representative in R'
 - One must exists since 2 is "short"
 - Thus identify L with $L(a) = Tr_{K/K'}(r \cdot a)$ over R
 - **\square** Further identify r as a representative of $r \in R'_q$
- □ Apply the trace, $c'_i = Tr_{K/K'}(r \cdot c''_i)$

• Recall that c'' is valid wrt $s' \in R'_q \subset R_q$

* Not exactly

Correctness

Recall $\langle s', c'' \rangle = k \cdot q + a \cdot \frac{q}{2} + e$ over K
For some $k, e \in R$ (with e small) and s' over R'Thus we have the equalities (over K): $\langle s', c' \rangle = \langle s', Tr_{K/K'}(r \cdot c'') \rangle = Tr_{K/K'}(r \cdot \langle s', c'' \rangle)$ $= L\left(q \cdot k + a \cdot \frac{q}{2} + e\right) = L(k) \cdot q + L(a) \cdot \frac{q}{2} + L(e)$

$$= L\left(q \cdot k + a \cdot \frac{q}{2} + e\right) = L(k) \cdot q + L(a) \cdot \frac{q}{2} + L(e)$$
$$= k' \cdot q + a' \cdot \frac{q}{2} + e'$$

 $\square a'$ encodes the α'_j 's that we want

Correctness

• We have $\langle s', c' \rangle = k' \cdot q + a' \cdot \frac{q}{2} + e'$

This looks like a valid encryption of a'
It remains to show that e' is short

 $\square e' = L(e) = Tr_{K/K'}(r \cdot e)$

 $\blacksquare e$ is short (from the input), r is short (reduced mod 2)

- **So** $r \cdot e$ is short
- **D** By Lemma 3 also $Tr_{K/K'}(r \cdot e)$ is short

Conclusions

- We have a general ring-switching technique
 - **D** Converts \boldsymbol{c} over R_m to \boldsymbol{c}' over $R_{m'}$ for m'|m|
 - The plaintext slots in c' can contain any linear functions of the slots in c
 - A c'-slot is a function of the c-slots that lie above it
 - We may choose projection functions to have c' contain subset of the slots of c
- Lets us to speed up computation by switching to a smaller ring

Epilog: The [AP13] Work

Alperin-Sheriff & Peikert described a clever use of ring-switching for efficient homomorphic computation of DFT-like transformations:

- Decompose it to an FFT-like network of "local" linear functions
- 2. Use ring-switching for each level
- 3. Then switch back up before the next level

Yields fastest bootstrapping procedure to date