FIELD-SWITCHING IN HOMOMORPHIC ENCRYPTION

Craig Gentry
Shai Halevi
Chris Peikert
Nigel P. Smart

HE Over Cyclotomic Rings

\square Denote the field $K_{m}=Q\left(\zeta_{m}\right) \cong Q[X] /\left(\Phi_{m}(X)\right)$

- Its ring of integers is $R_{m}=Z\left(\zeta_{m}\right) \cong Z[X] /\left(\Phi_{m}(X)\right)$
\square Mod- q denoted $R_{m, q}=R_{m} / q R_{m} \cong Z_{q}[X] /\left(\Phi_{m}(X)\right)$
\square "Native plaintext space" is $R_{m, 2}$
\square Ciphertexts*, secret-keys are vectors over $R_{m, q}$
$\square \boldsymbol{C}$ wrt \boldsymbol{S} encrypts a if (for representatives in R_{m}) we have $\langle s, c\rangle=a \cdot \frac{q}{2}+e(\bmod q)^{*}$ for small e
- Decryption via $a:=\operatorname{MSB}(\langle s, c\rangle)^{*}$
\square Using "appropriate" Z-bases of $R_{m, 2}, R_{m, q}$

HE Over Cyclotomic Rings

\square "Native plaintexts" encode vectors of values
$\square a \in R_{m, 2} \rightarrow\left(\alpha_{1} \ldots \alpha_{\ell}\right) \in G F\left(2^{d}\right)^{\ell}$ (more on that later)
\square Homomorphic Operations
\square Addition: $\boldsymbol{c} \boxplus \boldsymbol{c}^{\prime}$ encrypts $a+a^{\prime} \in R_{m, 2}$, encoding $\left(\alpha_{1}+\alpha_{1}^{\prime} \ldots \alpha_{\ell}+\alpha_{\ell}^{\prime}\right)$
\square Multiplication: $\boldsymbol{c} \boxtimes \boldsymbol{c}^{\prime}$ encrypts $a \times a^{\prime} \in R_{m, 2}$, encoding $\left(\alpha_{1} \times \alpha_{1}^{\prime} \ldots \alpha_{\ell} \times \alpha_{\ell}^{\prime}\right)$
\square Automorphism: $\boldsymbol{c}\left(X^{t}\right)$ encrypts $a\left(X^{t}\right) \in R_{m, 2}$, encoding some permutation of ($\alpha_{1} \ldots \alpha_{\ell}$)

- Relative to key $\boldsymbol{s}\left(X^{t}\right)$

HE Over Cyclotomic Rings

\square Also a key-switching operation
\square For any two $\mathbf{s}, \mathbf{s}^{\prime} \in\left(R_{m, q}\right)^{2}$ we can publish a key-switching gadget $W\left[\boldsymbol{s} \rightarrow \boldsymbol{s}^{\prime}\right]$
$\square W$ used to translate valid \mathbf{c} wrt \mathbf{S} into \mathbf{c}^{\prime} wrt \mathbf{S}^{\prime}
$\square \mathbf{c}, \mathbf{c}^{\prime}$ encrypt the same plaintext

$$
\langle\boldsymbol{s}, \boldsymbol{c}\rangle=\left\langle\boldsymbol{s}^{\prime}, \boldsymbol{c}^{\prime}\right\rangle+e(\bmod q)
$$

for some small e

How Large are m, q ?

\square Ciphertexts are "noisy" (for security)
\square noise grows during homomorphic computation
\square Decryption error if noise grows larger than q
\Rightarrow Must set q "much larger" than initial noise
\rightarrow Security relies on LWE-hardness with very large modulus/noise ratio
\rightarrow Dimension (m) must be large to get hardness
\square Asymptotically $|q|=\operatorname{polylog}(k), m=\widetilde{\Omega}(k)$
\square For realistic settings, $|q| \approx 1000, m>10000$

Switching to Smaller m?

\square As we compute, the noise grows
\square Cipehrtexts have smaller modulus/noise ratio
\square From a security perspective, it becomes permissible to switch to smaller values of m
\square How to do this?
\square Not even clear what outcome we want here:
\square Have \boldsymbol{c} wrt $\boldsymbol{S} \in\left(R_{m, q}\right)^{2}$, encrypting some $a \in R_{m, 2}$
\square Want \boldsymbol{c}^{\prime} wrt $\boldsymbol{s}^{\prime} \in\left(R_{m^{\prime}, q}\right)^{2}$ for $m^{\prime}<m$

- Encrypting $a^{\prime} \in R_{m^{\prime}, 2}$??

Ring-Switching: The Goal

\square We cannot get $a^{\prime}=a$ since $a^{\prime} \in R_{m^{\prime}, 2}, a \in R_{m, 2}$
\square We want a^{\prime} to be "related" to a
$\square a \in R_{m, 2}$ encodes $\left(\alpha_{1} \ldots \alpha_{\ell}\right) \in G F\left(2^{d}\right)^{\ell}$
$\square a^{\prime} \in R_{m^{\prime}, 2}$ encodes $\left(\alpha_{1}^{\prime} \ldots \alpha_{\ell^{\prime}}^{\prime}\right) \in G F\left(2^{d^{\prime}}\right)^{\ell^{\prime}}$
\square May want a^{\prime} to encode a subset of the α_{i} 's?

- E.g., the first ℓ^{\prime} of them
\square Not always possible, only if $d^{\prime}=d$
\square What relations between the $\alpha_{j}^{\prime}, \alpha_{i}$'s are possible?

Prior Work

\square A limited ring-switching technique was described in [BGV'1 2]
\square Only for $m=2^{n}, m^{\prime}=2^{n-1}$
\square Transforms big-ring \mathbf{c} into small-ring $\boldsymbol{c}_{\mathbf{1}}^{\prime}, \boldsymbol{c}_{\mathbf{2}}^{\prime}$
s.t. a (encrypted in \mathbf{c}) can be recovered from $a_{1}^{\prime}, a_{2}^{\prime}$ (encrypted in $\boldsymbol{c}_{\mathbf{1}}^{\prime}, \boldsymbol{c}_{\mathbf{2}}^{\prime}$).
\square Used only for bootstrapping

Our Transformation: Overview

\square Work for any m, m^{\prime} as long as $m^{\prime} \mid m$
$\square \mathbf{c}$ wrt $\mathbf{s} \in\left(R_{m, q}\right)^{2} \rightarrow \mathbf{c}^{\prime}$ wrt $\mathbf{s}^{\prime} \in\left(R_{m^{\prime}, q}\right)^{2}$
$\square \mathbf{c}, \mathbf{c}^{\prime}$ encrypt a, a^{\prime}, that encode vectors:
$\square \boldsymbol{c} \rightarrow\left(\alpha_{i}\right) \in G F\left(2^{d}\right)^{\ell}, \mathbf{c}^{\prime} \rightarrow\left(\alpha_{j}^{\prime}\right) \in G F\left(2^{d^{\prime}}\right)^{\ell^{\prime}}$

- Necessarily $d^{\prime} \mid d$, so $G F\left(2^{d^{\prime}}\right)$ a subfield of $G F\left(2^{d}\right)$
\square Each α_{j}^{\prime} is a $G F\left(2^{d^{\prime}}\right)$-linear function of some $\alpha_{i}{ }^{\text {'s }}$
\square We can choose the linear functions, but not the subset of $\alpha_{i}{ }^{\text {'s }}$ that correspond to each α_{j}^{\prime}
\square If $d^{\prime}=d$, can use projections (so α_{j}^{\prime} 's a subset of α_{i} 's)

Our Transformation: Overview

Denote $K=K_{m}, R=R_{m}, K^{\prime}=K_{m^{\prime}}, R^{\prime}=R_{m^{\prime}}$

1. Key-switching to map \boldsymbol{c} wrt $\boldsymbol{s} \rightarrow \boldsymbol{c}^{\prime \prime}$ wrt \boldsymbol{s}^{\prime}

- $\boldsymbol{s} \in R_{q}^{2}$ and $\boldsymbol{s}^{\prime} \in R_{q}^{\prime 2} \subset R_{q}^{2}$
- $\boldsymbol{c}^{\prime \prime}=\left(c_{0}^{\prime \prime}, c_{1}^{\prime \prime}\right)$ over the big field, wrt subfield key

2. Compute a small $r \in R_{q}$ that depends only on the desired linear functions
3. Apply the trace function, $c_{i}^{\prime}=\operatorname{Tr}_{K / K^{\prime}}\left(r \cdot c_{i}^{\prime \prime}\right)$
4. Output $\boldsymbol{c}^{\prime}=\left(c_{0}^{\prime}, c_{1}^{\prime}\right)$

Geometry of K

\square Use canonical-embedding to associate $u \in K$ with a $\phi(m)$-vector of complex numbers
\square Thinking of $u=u(X)$ as a polynomial, associate u with the vector $\sigma(u)=\left(u\left(\rho^{i}\right)\right)_{i \in Z_{m}^{*}}$
$\square \rho=e^{2 \pi i / m}$, the principal complex m 'th root of unity
■.g., if $u \in Q \subset K$ then $\sigma(u)=(u, u, \ldots, u)$
\square We can talk about the "size of u "
\square say the l_{2} or l_{∞} norm of $\sigma(u)$
\square For decryption, the "noise element" must be << q

Geometry of K, K^{\prime}

$\square K$ can be expressed as a vector-space over K^{\prime}
\square Similarly R over R^{\prime}, R_{q} over R_{q}^{\prime}, etc.
\square Every R^{\prime}-basis B induces a transformation T_{B} : coefficients in $R^{\prime} \mapsto$ element of R
\square With canonical embedding on both sides, we have a C-linear transformation $T_{B}: C^{\phi(m)} \rightarrow C^{\phi(m)}$
\square We want a "good basis", where T_{B} is "short" and "nearly orthogonal"

Geometry of K, K^{\prime}

\square Lemma 1: There exists R^{\prime}-basis B of R for which all the singular values of T_{B} are nearly the same.
\square Specifically $s_{1}(T)=s_{n}(T) \cdot \sqrt{f}$ where $f \leq \frac{\operatorname{rad}(m)}{\operatorname{rad}\left(m^{\prime}\right)}=\Pi$ primes that divide m but not m^{\prime}
\square The proof follows techniques from [LPR13], the basis B is essentially a tensor of DFT matrices

The Trace Function

\square For $u \in K, \operatorname{Tr}(u)=\sum_{i \in Z_{m}^{*}} \sigma(u)_{i} \in Q$
\square By definition: if u is small then so is $\operatorname{Tr}(u)$
$\square \operatorname{Tr}: K \rightarrow Q$ is Q-linear
$\square L: K \rightarrow Q$ is Q-linear if $\forall u, v \in K, q \in Q$,

$$
L(u)+L(v)=L(u+v) \text { and } L(q \cdot u)=q \cdot L(u)
$$

\square The trace is a "universal" Q-linear function:
\square For every Q-linear function L there exists $\kappa \in K$ such that $L(u)=\operatorname{Tr}(\kappa \cdot u) \forall u \in K$

The Trace Function

\square The trace Implies also a Z-linear map $\operatorname{Tr}: R \rightarrow Z$, and Z_{q}-linear map $\operatorname{Tr}: R_{q} \rightarrow Z_{q}$
\square Every Z-linear map $\mathrm{L}: R \rightarrow Z$ can be written as $L(a)=\operatorname{Tr}(\kappa \cdot a)$
\square But κ need not be in R
\square More on that later

The Intermediate Trace Function

$\square \operatorname{Tr}_{K / K^{\prime}}: K \rightarrow K^{\prime}$ when K is an extension of K^{\prime}
\square Satisfies $\operatorname{Tr}_{K / Q}=\operatorname{Tr}_{K / K^{\prime}} \circ \operatorname{Tr}_{K^{\prime} / Q}$
\square Lemma 2: if u is small then so is $\operatorname{Tr}_{K / K^{\prime}}(u)$
\square Less trivial than for $\operatorname{Tr}_{K / Q}$ but still true
$\square \operatorname{Tr}_{K / K^{\prime}}$ is a "universal" K^{\prime}-linear function:
$\square \operatorname{Tr}_{K / K^{\prime}}: K \rightarrow K^{\prime}$ is K^{\prime}-linear
\square For every K^{\prime}-linear function L there exists $\kappa \in K_{m}$ such that $L(u)=\operatorname{Tr}_{\mathrm{K} / \mathrm{K}^{\prime}}(\kappa \cdot u) \forall u \in K_{m}$
\square Similarly implies R^{\prime}-linear map $\operatorname{Tr}_{K / K^{\prime}}: R \rightarrow R^{\prime}$ and R_{q}^{\prime}-linear map $\operatorname{Tr}_{K / K^{\prime}}: R_{q} \rightarrow R_{q}^{\prime}$

Some Complications

\square Often we get $\operatorname{Tr}_{K / K^{\prime}}(R) \subsetneq R^{\prime}$
\square Also for many linear functions we get $L(u)=\operatorname{Tr}_{\mathrm{K} / \mathrm{K}^{\prime}}(\kappa \cdot u)$ where κ is not in R
\square In our setting this will cause problems when we apply the trace to ciphertext elements
\square That's (one reason) why ciphertexts are not really vectors over R
\square Hence the *'s throughout the slides

The Dual of R

\square Instead of R, ciphertext are vectors over the dual $R^{\vee}=\{a \in K: \forall r \in R, \operatorname{Tr}(a r) \in Z\}$
$\square \mathrm{R}^{\vee}=\mathrm{R} / \mathrm{t}, \mathrm{R}^{\prime V}=\mathrm{R}^{\prime} / \mathrm{t}^{\prime}$ for some $\mathrm{t} \in R, t^{\prime} \in R^{\prime}$
\square We have $\operatorname{Tr}_{K / K^{\prime}}\left(\mathrm{R}^{\vee}\right)=R^{\prime \vee}$
\square Also every R^{\prime}-linear $L: R^{\vee} \rightarrow R^{\prime V}$ can be written as $L(a)=\operatorname{Tr}_{K / K^{\prime}}(r \cdot a)$ for some $r \in R$
\square In the rest of this talk we ignore this point, and pretend that everything is over R

Prime Splitting

\square The integer 2 splits over R as $2=\prod_{i} \boldsymbol{p}_{i}^{e}$

- i ranges over $G=Z_{m}^{*} /(2)$
$\square \boldsymbol{p}_{i}$ is generated by $\left(2, F_{i}(X)=\prod_{j}\left(X-\zeta_{m}^{i \cdot 2^{j}}\right)\right)$
\square In this talk we assume $e=1$ (i.e., m is odd)
$\square \ell=|G|$ prime ideals, each $R / \boldsymbol{p}_{i} \cong G F\left(2^{d}\right)$
$\square \mathrm{R}_{2}=R /(2) \cong \oplus_{i} R / \boldsymbol{p}_{i} \cong \oplus_{i} G F\left(2^{d}\right)$
\square Using CRT, each $a \in R_{2}$ encodes the vector

$$
(\underbrace{\operatorname{amod} \boldsymbol{p}_{i_{1}}}_{\alpha_{1}}, \ldots, \underbrace{\operatorname{a\operatorname {mod}\boldsymbol {p}_{i_{\ell }}}}_{\alpha_{\ell}}) \in G F\left(2^{d}\right)^{\ell}
$$

Prime Splitting

\square Similarly 2 splits over R^{\prime} as $2=\prod_{j} \boldsymbol{p}_{j}^{\prime e^{\prime}}$
\square Again we assume $e^{\prime}=1$
\square Using CRT, each $a^{\prime} \in R_{2}^{\prime}$ encodes the vector

$$
(\underbrace{a^{\prime} \bmod \boldsymbol{p}_{j_{1}}^{\prime}}_{\alpha_{1}^{\prime}}, \ldots, \underbrace{a^{\prime} \bmod \boldsymbol{p}_{{j^{\prime}}^{\prime}}^{\prime}}_{\alpha_{\ell}^{\prime}}) \in G F\left(2^{d^{\prime}}\right)^{\ell^{\prime}}
$$

\square When $m^{\prime} \mid m$ then also $d^{\prime}\left|d, \ell^{\prime}\right| \ell$, and each $\boldsymbol{p}_{\boldsymbol{j}}^{\prime}$ split over R as a product of some of the \boldsymbol{p}_{i} 's

Prime Splitting

\square Example for $m=91, m^{\prime}=7$

Plaintext-Slot Representation

\square Recall that $R / \boldsymbol{p}_{i} \cong G F\left(2^{d}\right)$ for all the \boldsymbol{p}_{i} 's
\square But the isomorphisms are not unique
\square To fix the isomorphisms:
\square Fix a primitive m-th root of unity $\omega \in G F\left(2^{d}\right)$
\square Fix representatives $u_{i} \in Z_{m}^{*}$ for all $i \in Z_{m}^{*} /(2)$
$\square h_{i}: R / \boldsymbol{p}_{i} \rightarrow G F\left(2^{d}\right)$ defined via $h_{i}\left(\zeta_{m}\right)=\omega^{u_{i}}$
\square Same for isomorphisms $R^{\prime} / \boldsymbol{p}_{j}^{\prime} \cong G F\left(2^{d^{\prime}}\right)$

- Define $h_{j}^{\prime}: R^{\prime} / \boldsymbol{p}_{j}^{\prime} \rightarrow G F\left(2^{d^{\prime}}\right)$ by fixing ρ^{\prime} and u_{j}^{\prime}

Plaintext-Slot Representation

\square Making the h_{i} 's and h_{j}^{\prime} 's "consistent"
\square Fix $\omega \in G F\left(2^{d}\right)$ and set $\omega^{\prime}=\rho^{m / m^{\prime}} \in G F\left(2^{d^{\prime}}\right)$
\square Fix $u_{j}^{\prime} \in j \cdot(2) \subset Z_{m^{\prime}}^{*} \forall j$, then $\forall \boldsymbol{p}_{i}$ that lies over $\boldsymbol{p}_{j}^{\prime}$, choose $u_{i} \in i \cdot(2)$ s.t. $u_{i}=u_{j}^{\prime} \bmod m^{\prime}$
\square Fact: if \boldsymbol{p}_{i} lies over $\boldsymbol{p}_{j}^{\prime}$ and $r^{\prime} \in R^{\prime} \subset R$, then

$$
h_{i}\left(r^{\prime} \bmod \boldsymbol{p}_{i}\right)=h_{j}^{\prime}\left(r^{\prime} \bmod \boldsymbol{p}_{j}^{\prime}\right) \in G F\left(2^{d^{\prime}}\right)
$$

\square In words: for a sub-ring plaintext, the slots $\bmod \boldsymbol{p}_{j}^{\prime}$ and all the \boldsymbol{p}_{i} 's lie over it, hold the same value

Plaintext-Slot Representation

\square Lemma 3: \forall collection of $G F\left(2^{d \prime}\right)$-linear functions $\left\{L_{j}: G F\left(2^{d}\right)^{\frac{\ell}{\ell^{\prime}}} \rightarrow G F\left(2^{d^{\prime}}\right)\right\}_{j \in Z_{m^{\prime}}^{*} / 2}$
\exists a unique R_{2}^{\prime}-linear function $L: R_{2} \rightarrow R_{2}^{\prime}$ s.t.

$$
h_{j}^{\prime}\left(a^{\prime} \bmod \boldsymbol{p}_{j}^{\prime}\right)=L_{j}\left(\left(h_{i}\left(a \bmod \boldsymbol{p}_{i}\right)_{i}\right)\right)
$$

holds $\forall a \in R_{2}$ and $a^{\prime}=L(a)$, and $\forall j$
\square The i 's range over all the \boldsymbol{p}_{i} 's that lie over $\boldsymbol{p}_{j}^{\prime}$

Illustration of Lemma 3

$$
\boldsymbol{p}_{1} \boldsymbol{p}_{15} \boldsymbol{p}_{22}
$$

$\square \exists L: R_{2} \rightarrow R_{2}^{\prime}$ s.t. $\forall a \in R_{2}$ and $a^{\prime}=L(a) \in R_{2}^{\prime}$
$\square h_{1}^{\prime}\left(a^{\prime}\right)=L_{1}\left(h_{1}(a), h_{15}(a), h_{22}(a)\right)$
$\square h_{3}^{\prime}\left(a^{\prime}\right)=L_{2}\left(h_{3}(a), h_{17}(a), h_{31}(a)\right)$
\square Can express $L(a)=\operatorname{Tr}_{K / K^{\prime}}(r \cdot a)$ for some $r \in R_{2}^{*}$

* Not exactly

Step 1, Key Switching

\square Let $\boldsymbol{s} \in R_{q}^{2}, \boldsymbol{s}^{\prime} \in R_{q}^{\prime 2} \subset R_{q}^{2}$ (chosen at keygen)
\square Publish a key-switching matrix $W\left[\boldsymbol{s} \rightarrow \boldsymbol{s}^{\prime}\right]$
\square Given ctxt \boldsymbol{c} wrt \boldsymbol{s}, use W to get $\boldsymbol{c}^{\prime \prime}$ wrt \boldsymbol{s}^{\prime}
\square Just plain key-switching in the big ring
$\square \boldsymbol{c}^{\prime \prime}$ still over the big ring, but wrt a sub-ring key
$\square \boldsymbol{c}^{\prime \prime}$ encrypts the same R_{2}-element as \boldsymbol{c}

Security of Key-Swicthing

\square Security of usual big-ring key-switching relies on the secret \boldsymbol{s}^{\prime} being drawn from R_{q}

- Then W constrains only LWE-instance over R_{q}
\square What can we say when it is drawn from R_{q}^{\prime} ?
\square We devise LWE instances over R_{q} with secret from R_{q}^{\prime}, with security relying on LWE in R_{q}^{\prime}
\square Instead of one small error element in R_{q}, choose many small elements in R_{q}^{\prime}, use an R_{q}^{\prime}-basis of R_{q} to combine them into a single error element in R_{q}

R_{q}-LWE With Secret in R_{q}^{\prime}

\square Let $B=\left(\beta_{1}, \ldots, \beta_{n}\right)$ be any R_{q}^{\prime}-basis of R_{q}
\square Given the LWE secret $s^{\prime} \in R_{q}^{\prime} \subset R_{q}$
\square Choose uniform $a \leftarrow R_{q}$ and small $e_{1}^{\prime}, \ldots, e_{n}^{\prime} \leftarrow R_{q}^{\prime}$
\square Set $e=\sum_{i} e_{i}^{\prime} \beta_{i} \in R_{q}$ and output ($\left.a, b=a s^{\prime}+e\right)$
\square If the basis B is "good" (short, orthogonal) then e is not much larger than the $e_{i}^{\prime \text { 's }}$
\square This is where we use Lemma 1 (\exists good basis)

R_{q}-LWE With Secret in R_{q}^{\prime}

\square Theorem: If decision-LWE is hard in R_{q}^{\prime}, then (a, b) is indistinguishable from uniform in R_{q}^{2}
\square Proof:
\square We can consider $a=\sum_{i} a_{i}^{\prime} \beta_{i}$ for uniform $a_{i}^{\prime} \leftarrow R_{q}^{\prime}$

- Induces the same uniform distribution on a
\square Then we would get $b=\sum_{i}\left(a_{i}^{\prime} s^{\prime}+e_{i}^{\prime}\right) \beta_{i}$.
- If the ($a_{i}^{\prime} s^{\prime}+e_{i}^{\prime}$) were uniform in R_{q}^{\prime}, then b would be uniform in R_{q}.

Steps 2,3: Ring Switching

$\square \boldsymbol{c}^{\prime \prime}$ encrypts $a \in R_{2}$ wrt \boldsymbol{s}^{\prime}
$\square a$ encodes a vector $\boldsymbol{\alpha}=\left(\alpha_{i}\right)_{i} \in G F\left(2^{d}\right)^{\ell}$
\square We view it as $\boldsymbol{\alpha}=\left(\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{\ell^{\prime}}\right) \in\left(G F\left(2^{d}\right)^{\ell / \ell \prime}\right)^{\ell^{\prime}}$
$\square \ell^{\prime}$ target functions, $L_{j}: G F\left(2^{d}\right)^{\ell / \ell^{\prime}} \rightarrow G F\left(2^{d^{\prime}}\right)$
\square Want small-ring ciphertext \boldsymbol{c}^{\prime} encrypting $a \in R_{2}^{\prime}$ that encodes $\boldsymbol{\alpha}^{\prime}=\left(\alpha_{1}^{\prime}, \ldots, \alpha_{\ell^{\prime}}^{\prime}\right) \in G F\left(2^{d^{\prime}}\right)^{\prime}$
\square For each $j, \alpha_{j}^{\prime}=L_{j}\left(\boldsymbol{\alpha}_{j}\right)$

Steps 2,3: Ring Switching

\square By Lemma 2, $\exists L: R_{2} \rightarrow R_{2}^{\prime}$ that induces the L_{j} 's
\square Expressed as $L(a)=T r_{K / K^{\prime}}(r \cdot a)$ for $r \in R_{2}^{\prime *}$
\square We identify r with a short representative in R^{\prime}
■ One must exists since 2 is "short"

- Thus identify L with $L(a)=\operatorname{Tr}_{K / K^{\prime}}(r \cdot a)$ over R
\square Further identify r as a representative of $r \in R_{q}^{\prime}$
\square Apply the trace, $c_{i}^{\prime}=\operatorname{Tr}_{K / K^{\prime}}\left(r \cdot c_{i}^{\prime \prime}\right)$
\square Recall that $\boldsymbol{c}^{\prime \prime}$ is valid wrt $\boldsymbol{s}^{\prime} \in R_{q}^{\prime} \subset R_{q}$

Correctness

$\square \operatorname{Recall}\left\langle s^{\prime}, c^{\prime \prime}\right\rangle=k \cdot q+a \cdot \frac{q}{2}+e$ over K
\square For some $k, e \in R$ (with e small) and \mathbf{s}^{\prime} over R^{\prime}
\square Thus we have the equalities (over K):

$$
\begin{aligned}
& \quad\left\langle s^{\prime}, c^{\prime}\right\rangle=\left\langle s^{\prime}, T r_{K / K^{\prime}}\left(r \cdot c^{\prime \prime}\right)\right\rangle=T r_{K / K^{\prime}}\left(r \cdot\left\langle s^{\prime}, c^{\prime \prime}\right\rangle\right) \\
& =L\left(q \cdot k+a \cdot \frac{q}{2}+e\right)=L(k) \cdot q+L(a) \cdot \frac{q}{2}+L(e) \\
& \quad=k^{\prime \prime} \cdot q+a^{\prime} \cdot \frac{q}{2}+e^{\prime \prime}
\end{aligned}
$$

$\square a^{\prime}$ encodes the $\alpha_{j}^{\prime \prime}$'s that we want

Correctness

- We have $\left\langle s^{\prime}, c^{\prime}\right\rangle=k^{\prime} \cdot q+a^{\prime} \cdot \frac{q}{2}+e^{\prime}$
\square This looks like a valid encryption of a^{\prime}
\square It remains to show that e^{\prime} is short
$\square e^{\prime}=L(e)=T r_{K / K^{\prime}}(r \cdot e)$
$\square e$ is short (from the input), r is short (reduced mod 2)
\square So $r \cdot e$ is short
\square By Lemma 3 also $\operatorname{Tr}_{K / K^{\prime}}(r \cdot e)$ is short

Conclusions

\square We have a general ring-switching technique
\square Converts \boldsymbol{c} over R_{m} to \boldsymbol{c}^{\prime} over $R_{m^{\prime}}$ for $m^{\prime} \mid m$
\square The plaintext slots in \boldsymbol{c}^{\prime} can contain any linear functions of the slots in \boldsymbol{c}

- A \boldsymbol{c}^{\prime}-slot is a function of the \boldsymbol{c}-slots that lie above it
\square We may choose projection functions to have \boldsymbol{c}^{\prime} contain subset of the slots of \boldsymbol{c}
\square Lets us to speed up computation by switching to a smaller ring

Epilog: The [AP 13] Work

Alperin-Sheriff \& Peikert described a clever use of ring-switching for efficient homomorphic computation of DFT-like transformations:

1. Decompose it to an FFT-like network of "local" linear functions
2. Use ring-switching for each level
3. Then switch back up before the next level

Yields fastest bootstrapping procedure to date

