‘Cryptographic Hash Functions

and their many applications

Shai Halevi — IBM Research

| —

- S USENIX Security — August 2009

—
(e
R
———

Thanks to Charanijit Jutla and Hugo Krawczyk

NTIET 2ire NS TUNctons’

T ———
e

—

— - —

= JuUst a method of compressing strings
—E.g., H:{0,1}* > {0,1}160
— Input is called “message”, output is “digest”

= WWhy would you want to do this?

— Short, fixed-size better than long, variable-size
— =Jrue alse for non-crypto hash functions

| e

.~ Digesicanleradded forrrediindancy
"~ 'Digest hides possible structure in message

—

Typlcally-usmg Merkle Damgard teration:

== Startfrem;a “compression function”
— h:{051}b+n9{051}n |M=b=512bits

—

¢ =160 bits d=h(c,M)=160 bits

2_. lterate it

M.

d;

= e —— i

AT AE ney JOO(o)

“Modern, collision resistant hash functions were designed to create
small, fixed size message digests so that a digest could act as a

proxy for a possibly very large variable length message in a digital

signature algorithm, such as RSA or DSA. These hash functions
have since been widely used for many other “ancillary” applications,

including hash-based message authentication codes, pseudo
random number generators, and key derivation functions.

“8eqguest for Candidate Algorithm Nominations?,
-- NIST, November 2007

D0l S4c

=

sSVliessage-authentication:
= Commitment: commit(M) = H(M

= Key derivation: AES-key = H(DH= value

iSi-Q'natures: éign(M)' RSA:‘ ;_'(W_I_]-S”
tag=H(key,

\Y

)
)
)

= Removing interaction [Fiat-Shamir, 1987]

b Tiake interactive identification Protocol s,
. — Replace enerside by a'iash flinction |

response

'_’-

B

Challenge = H(smthng, context)

— Get non-interactive signature scheme _smthng, response

= —

Rart I Bandom functions
vS. hash functions

= What we reaIIy want'1s H that behaves
Hustlike-a-random function™:

Digest d=H(M) chosen uniformly for each W
— Digest d=H(M) has no correlation with M

— For distinct M,,M,,..., digests d=H(IV.) are
completely uncorrelated to each other

o Cannot find collisions, or evennears -collisiensy
= Gannotfind Mo “hlt”aspeC|f|cd |

— Cannot find fixed-points (d = H(d))
— etc.

1
2. Design a secure cryptosystem using it
= Prove security relative to a “random oracle”

E—

e e

I Pretend hashrfunction Is ree_tiiy this godd

2. Design a secure cryptosystem using it
= Prove security relative to a “random oracle”

3. Replace oracle with a hash function
= Hope that it remains secure

= Pfétend hashriunRction IS rea_lﬁ;/ fhis good

o Designra secure cryptosystem using it
= Prove security relative to a “random oracle”

3. Replace oracle with a hash function
= Hope that it remains secure

SRV Ery successtul paradigniumanysSehemesis
— Eig., @AER encryption, FDH,PSS signatures

= Also all the examples from before...
— Schemes seem to “withstand test of time”

rlﬂ(Off] OFEC

S
—

——

. s'is SOme crypto scheme (e.g., signatures),
that uses a hash function H

= S proven secure when H is random function

—> Any attack on real-world s must.use
some “nonrandom property” of H

= \We should have chosen a better H

— ;
= yithout thatiénenrandom,property”

SNeaveat: how do we know whatémenrandom
properties” are important?

= EXISt signature sciiemes, that are:

1. Provably secure wrt a random function
2. Easily broken for EVERY hash function

* |dea: hash functions are computable
— This Is a “nonrandom property” by itself

IEREXNIDIE 2 Schieme which isisecureonly
Lo nenEeempUtablie s’

— Scheme is (very) “contrived”

= Start from any secure signature scheme
— Denote signature algorithm by SIG17(key,msg)

= Change SIG1 to SIG2 as follows: Some
, Technicalities
SIG2"(key,msg): interprate msg as code I1
— If IT1(1)=H(i) for i=1,2,3,...,|msg|, then eutput key
— Else output the same as SIG1™(key,msg)

= H is randomy always the “ElSEGase

———

N AENS 2 hiashfunction, attempting toersign
the code of H outputs the secret key

= ROM proofs may not mean what you think...

— Still they give valuable assurance, rule out
“almost all realistic attacks”

= What “nonrandom properties” arerimporiant
for OAEP / FDH / PSS / ..

__.J=Iow woeuldithese scheme be aifected.by.a
J_v,eakness,an—the—hash fURCHENATIN Use?

" ROM may lead to careless implementation

= Recalll we often construct our hash functions
[romrecompression functions

— Even if compression is random, hash is not
= E.g9., H(key|M) subject to extension attack

— H(key | M|M’) = h(H(key|M), M)
— Minor changes to MD fix this
= But they come with a price (e.g. prefix-free encoding)

NERGempressionsalsobuilt frompew-levelblockss s

—

==1g., Davies=-Meyer construction, h(c,M)=E,,(c)®c

— Provide yet more structure, can lead to attacks
on provable ROM schemes [H-Krawczyk 2007]

= —

~Part II: Using hash functions
In applications

sing rflperrsc 1

i Applications should rely only on “speciiic
security: properties™ of hash functions
— Try to make these properties as “standard” and

as weak as possible

" |ncreases the odds of long-term security

L \Whenweaknesses are found.in hash function,
appllcatlon mprejlikely.tersuiive

=E.g., MD5 is badly broken, but HMAC-MD5 is
barely scratched

—

= [PDeterministic-hasiing Stronger
— Attacker chooses M, d=H(M) /\
= Hashing with a random salt

— Attacker chooses M, then good guy
chooses public salt, d=H(salt,M)

wsalslashingsiandom messages
— — M randeni, d=H(W) -
""Hashing with a secret key

— Attacker chooses M, d=H(key,M)

SIEIINISTC NEsning

ER———

= Collision Resistance
— Attacker cannot find M,M" such that H(M)=H(M")

= Also many other properties

— Hard to find fixed-points, near-collisions,
M s.t. H(M) has low Hamming weight, etc.

— Attacker chooses M, then given random satt,
cannot find M" such that H(salt,M)=H(salt,M")

= enhanced TRC (eTCR)

— Attacker chooses M, then given random satft,
cannot find M’ ,salt’ s.t. H(salt M)=H(salt' ,M")

A

HaSning ranclorn rMssseges

- Second Preimage: Besistance

— Given random M, attacker cannot find M
such that H(M)=H(M")

= One-wayness

— Given d=H(M) for random M, attacker cannot
find M" such that H(M’)=d

s Extraction”

« — Foerrandem salt, high—entro@- M, the digest
d=H(salt,M) is close to being unitorm

* Combinatorial, not cryptographic

rlaisring witrn

= Pseudo-Random Functions

— ['he mapping M-H(key,M) for secret key
looks random to an attacker

= Universal hashing®
— For all M=M", Pr,. | H(key,M)=H(key,M")]<e

—

* Combinatorial, not cryptographic

= Hash-then-sign-paradigm
— First shorten the message, d = H(M)
— Then sign the digest, s = SIGN(d)

= Relies on collision resistance
— If H(M)=H(M’) then s is a signature on both

2eAttacks on MDS5, SHA-1 threaten current
Signaturesy - —

———

" —VID5 attacks can be used to getbad CA cert
[Stevens et al. 2009]

- Attacker works: ofi=line (find I\/I \V/)

— Can use state-of-the-art cryptanalysis, as much
computation power as It can gather, without
being detected !!

= Helped by birthday attack (e.g., 2°° vs 21¢9)
wea\Wellwernthithe effort

~ — One collisioni=»forgerysforany signer

s—

e

= Jse randomized hashing

— To sign M, first choose fresh random salt
— Set d= H(salt, M), s= SIGN(salt|| d)

= Attack scenario (collision game):
— Attacker chooses M, \7" same salt (since salt

| is explicitly si
| et Signer chooses random saliy 7=+ icitly signed)

:nj—AItaCker-‘-mﬁ'ST"ﬁﬁd MEsit H(Salt, M) = H(salt, M)
= Attack Is inherently on-line
— Only rely on target collision resistance

Crinasring for Un LTL

i —
i ————

. ——

= Not" every randomization works

="H(M|saltyrmay be subject to collision attacks
= when H is Merkle-Damgard

— Yet this is what PSS does (and it’s provable in the ROM)

= Many constructions “in principle”
— From any one-way function

= Semeiengineering challenges

|

| —

— VoSt constitictionsiuselong/Vanarlessize randomness,
" don’t preserve Merkle-Damgard

= Also, signing salt means changing the underlying
signature schemes

—

—

= Use “stronger randomized hashing”, eTCR
— To sign M, first choose fresh random salt
— Setd = H(salt, M), s =SIGN(d)

= Attack scenario (collision game):

— Attacker chooses M attacker can use
L= Signer chooses random saff = AEEAEEEEE

. — Attackerneeds M salt'sit. H(salt M)=H(salt,M")

EE——

= Attack is still inherently on-line

= Use simple message-randomization
— BMX: M=(M,,M,,... M,), r
(r, M,;®@r,M,@r,....M, @r)

= Hash(RMX(r,M)) is eTCR when:

— Hash is Merkle-Damgard, and
— Compression function is'~ 2"d-preimage-resistant

. Slgnature___[SIGN (WHashERVIX(F,M))T

Wrtresh per signature, one block (e.g. 512 bits)
— No change in Hash, no signing of r

= Sender, Receiver, share a secret key

= Compute an authentication tag
— tag = MAC(key, M)

= Sender sends (M, tag)
= Recelver verifies that matches

sUAltacken cannoetforge. tagspwithoutkey

-—--——r
R —
'_’-

= Simple key-prepend/append have problems
when used with a Merkle-Damgard hash
— tag=H(key | M) subject to extension attacks

— tag=H(M | key) relies on collision resistance

= HMAC: Compute tag = H(key. | H(key | M))
B — About as fast as key-prepend for a MD.hash

= eliesonlierPRIEquality o hash

"~ — M~H(key|M) looks random when key is secret

As a result, barely
affected by collision
attacks on MD5/SHA1

=S ClieSIeRINABINERIE property of hash
— M~H(key|M) looks random when key is secret

E— = —

= Compress message with hash, t=H(key;,M)
= Hide t using a PRF, tag = t&PRF(key,,nonce)
— PRF can be AES, HMAC, RC4, etc.

— Only applied to a short nonce, typically not a
performance bottleneck

weesSecure if'the PRF is good, H is “universal’
o — Bor MEMEATPr. [Hkey,MYSH(key,M’)=A]<e)

'_’-

— Not cryptographic, can be very fast

==Universality? is comblnatorlal provable
= no need: for “security margins” in design

= Many works on fast implementations
From inner-product, Hy; ,o(M;,M5)=(K;:My):(K5+M,)

= [H-Krawczyk' 97, Black et al."99; ...]
From polynomial evaluation H,(M5,...,M,)=X. M, K

— = [Krawezyk 94, Shoup 96, Bernstein 05, McGrew:
~ Viega'0e,...]

= AS fast as 2-3 cycle-per-byte (for long M’s)
— Software implementation, contemporary CPUs

Part I
Designing a hash function

Fugue: IBM’s candidate for the
NIST hash competition

———

PROs: modular'design, reduce to the “simpler
problem™ off compressing fixed-length strings

— Many things are known about transforming

compression into hash

CONs: compression—>hash has its problems
L—ilirsinot fiee (e.g. message encoding)

- .

= Some, attacksiisased onmtheViD structure
SR Extension attacks (rely on H(x|y)=h(H(x),y))
= “Birthday attacks” (herding, multicollisions, ...)

—

" Eindtmany. oli-line collisions @ L
— “Trree structure” with ~2"> d, /'s

N
— Takes ~ 2273 time @ s

1
1,2

M
M
y

= Publish final d

4

= Then for any prefix P
L~ Find “linking block™ L s.t. H(P|L) in.the, tree
- — Takes ~ P2BN e
"' Read off the tree the suffix S to gettoad

—> Show an extension of P s.t. H(P|L|S) =

rle culorit: srrell Irtersr
= \Withia compression function, we:

— Work hard on current message block
— Throw away this work, keep only n-bit state

= Alternative: keep a large state
— Work hard on current message block/word
_Update.some part of the big state
=i \Vore flexibIEranpproachm s
“"="Also more opportunities to mess things up

= _State Is. 13 . words = 52 bytes ,jv EEE2ESASES

= Process one 4-byte word at a time
— One AES-like mixing step per word of input

= After some final processing, output 8 words

- Collision attack by Peyrin (2007)
—Complex itya=a2li2(still bettertivan brute-force)

R

—_— -'Recently improved to ~ 2190 [Khovratevich 2009]
— “Start from a collision and go backwards”

= Proof-driven-design
— Designed to enable analysis
- Proofs that Peyrin-style attacks do not work

= State of 30 4-byte words = 120 byites

WO “super-mixing” rounds per word' of input
— Each applied to only 16 bytes of the state
—\Witlh somesextiayginean aifiiusion

SUper-mixing is AES-like
— But uses stronger MDS codes

| —

[| m—— =

Initial State (30 words)

Pro

CECSS

New

State

v
Iterate

|

State

Final Processing

i

Output 8 words = 256 bits

e — i

” ——————— Thinkof M,, ...,M,
Initial State (30 words) and M’,,... M,

[| m—— =

A 4

Process «— AM,

\

Collision

; > NEEREREL
New State ! AM’s are

| not all zero
Iterate) AM;

|

A State = 0? A State =0
- Internal collision

A State # 0
Final Processing - External collision

i
A=0

v

1.-Input one word

2. Shift 3 columns to right

3. XOR into columns 1-3

4. “super-mix” operation SEOCESS

on columns 1-4

Repeat 2-4 once more

This is where
the crypto
happens :

State

Final Stage

= Similar to one AES round
— Works on a 4x4 matrix of bytes

— Starts with S-box substitution
= Byte b, S[256] = {...};

= b= Sllo |
— Does linear mixing
— Stronger mixingithan AES

=Diagonal bytes as in AES
— Other bytes are mixed into both column and row

i gy = ————
o —

I “H‘! 1) r Lgue -

gepraic notation:
—o (S[b,]
by | M« |SIEal

\b'16 J \S[b16] 4

ERVigenerates.a good lineareede

~ —lfallthe _bi’Bﬁes but 4 are zero
then = 13 of the S[b,] bytes must be nonzero

— And other such properties

e

<

Analyzing Irternal collisiorns”

— - A —
— —

now A, ,#0 .
still A, ,#0

e
before SMIX: A, #0
| 1A

DeIOIe I Q. A+U

Atter last input word: AState=0

* a bit oversimplified

yZIng Jfl[s‘fflcl.] colls Om“"

—-——I.___ -

Ays,1#0

Ayg 470

Ayg ,#0 | <

now A, ,#0

still A, ,#0

before SMIX: A, ,#0

' =

after input word: AState=0

* a bit oversimplified

Analyzing interrzal collisions”

= ——— - = —

— - — —— e ——————
before input: A;=?, A,: 5720 iy

- Ays1#0
Ayg 4#0
Ayg 4#0

now A ,#0

still A, ,#0
before SMIX: A, ,#0
' RO
after input word: AState=0

* a bit oversimplified

The analysis
fromprevious
slides was
upto here

Table 8 Evolution of Zg

TIX,

as1 X1 @ 0 0
SMIX
¥ip Y1,¥ 1,71,

Many nonzero byte
differences before the

SMIX operations

O
¥ipg ¥1;¥1,¥ 1,
ROR3
[Fiz]o 0 o ¥ 1o¥ 11¥ 12
SMIX
Elg F13 FlaF 1z X1 ¥1g¥1:Y 12
(ORI
Elp Z11 Z12E 15 Xl ¥ lo¥ 11Y 1
ROR3Z
Zlg 0 0 0 X1 Y1p¥ 11 Y 1221081, Flg
T
0 3 0 12 15 18 i | | 7 2q
A5-3 22 ¥ig 0 0O X1 Zlg 0 22 Yip¥ 1, Y1, 81,81, 814
SMIX
Uy 2 pd; yia X1 Zl, 0 x2 ¥1,¥ 1, Y1, 21,81, 21,
CMIX
y‘}lﬂ yﬂ] ;.IE; !,ﬂs.xl 313 o 2 X1 I’IDFIJI’IEEIHEIJEIE
ROR3
Xl 0 0O 0ZE1;0=22 0 X1 YigF 1, ¥1,81581, 51, 2 w2 w2y
SMIX
23y 23y 23,23 0 21022 0 X1 YigF 1) ¥1,21081, 21,92, 42 y2a
O
=2a 321_ oz 0 EFlz0x2 0 X1 Zls lrluf!’lllrlifluzl].zlzlﬂ‘a 2 yla
ROR3
. 23z 0 2153 0 x2 X1 0 Zls Y1o¥ 1Y 12251621 Z1ap2) o2 y2z 230 23] =2
TIX

= All blank colls are ero.

Primed variables are defined in Section 1001.4. The shaded colls are the ones

affected in that step. The bored variables are the ones that are not determined by varables from earier
(lower) steps. Variables that are necessarily non-zero are in capital Rounds are refered to by the
subseript on the TIX stop for that round. 77 Continued on next paga.

Tahle 9: Evolution of Differential State for internal Collision (contd.)

1]

G '] 12

15 18 21 | i 20

22z D Zls
T 3

0 x2 X1

13

¥1o¥ 11 ¥ 122 108 118 1oy 21 22z 2o 2] 22

AS|-3 13 g Flg
SMIX
o 13 33q

!.I'3.J:. B via

CMIX

ROR3

= o
SMIX

zy) iy

23y =3] =35

23z 0 z2g
TIX =

CMIX

FCrHS

o 2 231 X1 23

B

ya_‘ 325 X1 z3

pds 12 23, X1 13
0 9 X1 13 Z1s 0 T2
23, 22, X113 Z1y 0 2

23, 23, X1 13 Zly 0 2

Z1,

Z1q

Y10V 1Y 1521081, F Ly ¥ yd yde 2 e 22,

V1V 1,V 1aZ 1021, F Ly ¥y ez 2z 23,

ztg 0 z2 1"1.;.1*'1 lflig 1031]311%?21”‘1}32“32;321

¥V 11V 122102 11 Z12 y25 421 y222 20222 20y 3531932
FigV1, ¥ 132 1,21, 21, 4%, §2) y2220p2 0]z 23y, 13,

¥Vigyly p13 Z1o8 1, Ty 92 335202222y 3nd vy

X1 23 0 0 21z 0 22 0 0 Yiopl] pli Z10Z 1y Zlagy2) 321 y20 220 23] zFay3qydi1ydaz3osd] 235

AS4 4 p3ilz23| X1|3 0 0 Zlzz3a 12 4 0 Yiepl, plh 210811 Zla g2 121 122 2% 2% 222y 3hy31ydaz 3022, 235

SMIX
Mo pdy iz

o pdi pda

CMIX

ROR3

M| 3 0
SMIX
g =4, 24y

=4y =d] =45
ROR3

TIH 4

CMIX

gdz 3 0 0 Flzz33 72 w4 0 ¥igpl] yls ElpZly Fla g2, 121 422 225 22 =22 y3003133223023] =35

gz 3 0 0 Zlzz33 72 74 0 ¥lopl] pls 215 E11 Zla g3 121 420 225 22 =20y 3hpd1y3e23023] =35

0 ZFlyz3; 72 x4 O Yigyl] pll =1 21,2 1,92, 2y 2p 22y 23] 23, gl 93, 18,233z pdlpd s

2y Elgzdy 12 7 0 ¥Ylgpl] w1 =152 1,5 1,930 wdy yds =3y 23] =3, vl 93y p8a 233z 3 pdipd 1

2y Flyzdy 12 14 0 Yigyl] yllz14 21,2 1,020 y2) g2 23 22 23, y3l ydy y3223023,z Mydlnd; pdy

72 4 0 Yiepl] g5 =15 21075 1592 ¢2] 125 =20 22 =2 ¢34 131 932 230 23] =35 pdipdipdaz dfed] =45

h £l 3 333
AS[-5] +
]

12 14 0 Yigyl) yl} 21521, 21,920 y2 42, 22 2%, 23, y3, 33, ¥3; 23 23] 234 ydiyd, oz dl 24! 242

+ 4
zdy Th

1]

3 G '] 12

% Primed variables are defined n Sections 1001.5 and 10.1.6.

SVt does this mean? Consider tis attack:
—Attackerfeeds in'random My, M,,... and M*,M",...
— Until State, @ State’, = some “good A”

— Then it searches for suffixed (M, ,1,.-.,M;_.4),
(M’ _4,...,M’) that will induce internal collision

Theorem™: For any fixed A,
W Pr = suffixesgthatinduce cojlision| | < 27PREss

R
prem—

* Relies on a very mild independence assumptions

ArlzlyzIrig m'temgl colllslorns

e ——

E— = —

= Why do we care about this analysis?
= Peyrin’s attacks are of this type
= All differential attacks can be seen as

(optimizations of) this attack

— Entities that are not controlled by attack are
L always presumed random

ALK nownECOIIBION traces'as close as we
~ can get to understanding collision resistance

DEE] HrlfriJ

- Slmllar analysis alsorfor external collisions
—“Unusually thorough” level of analysis

= Performance comparable to SHA-256
— But more amenable to parallelism
= One of 14 submissions that were selected

BV NIST toradvance to 219 round ofithe
.SHA3 COMPEtItion

= —

= Hash functions are very: useful

= We want them to behave “just like random
functions”

— But they don't really

= Applications should be designed to rely on
S WeaK as practical” propeties ofiliashings

it = TCR/ENCHR ratherthan' collision-resistance
= A taste of how a hash function Is built

