
Compressible FHE with

Applications to PIR
Craig Gentry, Shai Halevi

Algorand Foundation Research

*Work done while at IBM Research

Information Rate of Homomorphic Encryption

Contemporary (F)HE is a bandwidth hog

Ciphertext is larger than plaintext by at least a large

constant factor (sometimes more)

This is NOT the case for standard encryption

Can do |ctxt|~|ptxt|

Can we hope to get similar efficiency with (F)HE?

Information Rate of Homomorphic Encryption

The only rate-efficient HE is Damgård–Jurik

𝑝𝑡𝑥𝑡 ∈ 𝑍𝑁𝑟 , 𝑐𝑡𝑥𝑡 ∈ 𝑍𝑁𝑟+1, for any desirable 𝑟

Can grow r to get rate 1-ε for any ε>0

But

only additive-homomorphic

rather slow (especially in the context of applications)

not quantum safe

What about lattice-based HE schemes?

Yorktown Heights, 2017UCSB, 2016Berkley, 2015

History of This Work

Toronto, 2018

What’s the rate of lattice-

based HE schemes?

Eh… ½, maybe more?

History of This Work

Back in Yorktown Heights, 2018

That’s embarrassing, we

really should work on this

Okay

This Work

A “compressible” LWE-based (F)HE

Rate 1-ε, security under LWE with gap 𝜆𝑂(Τ1 𝜖)

Application to single-server PIR

First “practical” scheme for large databases

Rate 4/9, should be 10-20 cycles per byte in db

Faster than whole-database AES encryption

Compare to state of the art (SealPIR, [ACLS18]), with rate

1/1000 and >100 cycles/byte

Meanwhile, elsewhere…

I’d better ask someone else

Independent Work

Döttling, Garg, Ishai, Malavolta, Mour, Ostrovsky.
Trapdoor hash functions and their applications. CYRPTO 2019.

Limited homomorphism, choice of assumptions

Brakerski, Döttling, Garg, Malavolta. Leveraging linear

decryption: Rate-1 fully-homomorphic encryption and time-lock puzzles.

2019.

FHE, based on LWE

More general than ours, less practically efficient

What is Compressible (F)HE?

An (F)HE Scheme (KeyGen, Enc, Dec, Eval)

Encrypted output Eval(circuit, encrypted Input)

But Dec is broken into:

Compression: c* Compress(c1,c2,…)

Compressed decryption: m1,m2,… cDec(c*)

Rate : For any circuit P with long enough output

|Compress(Eval(P, Enc(input)))|<| P output|/

Background: [PVW08] Packing

Recall Regev encryption

A (𝜆 + 1) (pseudorandom) vector encrypts one scalar

 (𝒔𝒌| − 𝟏), 𝒄𝒕 = 𝒆𝒏𝒄𝒐𝒅𝒆 𝒎 + 𝒆 𝒎𝒐𝒅 𝒒 , 𝒆 ≪ 𝒒

[PVW08]: Regev-like with rate 1-ε

A (𝜆 + 𝑟) (pseudorandom) vector encrypts 𝑟 scalars

Can grow r to get rate 1-ε for any ε>0

[𝑺| − 𝑰] ⋅ 𝒄𝒕 = 𝒆𝒏𝒄𝒐𝒅𝒆 𝒎 + 𝒆 𝒎𝒐𝒅 𝒒 , |𝒆| ≪ 𝒒

Each row of this equation is a Regev encryption

Background: “Gadget Matrices” [MP12]

A rectangular matrix 𝐺 ∈ 𝑍𝑞
𝑛×𝑚

A known “public trapdoor” 𝐺−1 0 ∈ 𝑍𝑞
𝑚×𝑚:

a. Entries of 𝐺−1 0 are small, |𝐺−1 0 |∞ ≪ 𝑞

b. 𝐺−1 0 has full rank over the reals

c. 𝐺 × 𝐺−1 0 = 0 (𝑚𝑜𝑑 𝑞)

For 𝐶 ∈ 𝑍𝑞
𝑛×𝑚, 𝐺−1(𝐶) is a redundant version of C

An 𝑚 ×𝑚 matrix satisfying a,b, and G × 𝐺−1 𝐶 = 𝐶

Can be found efficiently from 𝐶

The more rectangular G, the smaller 𝐺−1 ⋅ can get

Gn

m

Background: “Gadget Matrices” [MP12]

Example, bit-decomposition: ℓ = log 𝑞 , 𝑚 = 𝑛 ⋅ ℓ

G =

1 2…2ℓ−1

1 2…2ℓ−1

⋱
1 2…2ℓ−1

𝐺−1 0 =

2
−1 2

−1
⋱ 2

−1
b

its-o
f-q
…

b
its-o

f-q

Background: [GSW13] HE Scheme

Ptxt: scalars (e.g., bits), Ctxt: 𝑛 × 𝑚 matrices

𝐶 ∈ 𝑍𝑞
𝑛×𝑚 encrypts 𝜎 ∈ 𝑍𝑞 wrt 𝑠𝑘 if

𝒔𝒌 ⋅ 𝑪 = 𝝈 ⋅ 𝒔𝒌 ⋅ 𝑮 + 𝒆 𝒎𝒐𝒅 𝒒 |𝒆| ≪ 𝒒

𝐶1 + 𝐶2 encrypts 𝜎1 + 𝜎2

𝐶1 ⋅ 𝐺
−1 𝐶2 encrypts 𝜎1𝜎2

Multiplication noise term is 𝜎1 ⋅ Ԧ𝑒2 + Ԧ𝑒1 ⋅ 𝐺
−1 𝐶2

The scalars 𝜎 should be small

Our Construction

The Two Parts of Our Compressible HE

Low-rate scheme for homomorphism

A slight variant of GSW

High-rate scheme for compression

Somewhat similar to the matrix HE scheme of [HAO16]

Ptxt, ctxt are matrices of similar dimensions

We describe two variants of that scheme

The two parts “play nice” together

They share the same secret key

Can pack many GSW ctxts in one high-rate ctxt

The Low-Rate Scheme

Like GSW, but sk is a matrix, 𝑆 = [𝑆′| − 𝐼]

As in [PVW08]

If 𝐶 ∈ 𝑍𝑞
𝑛×𝑚 encrypts 𝜎 ∈ 𝑍𝑞 then

𝑺 ⋅ 𝑪 = 𝝈 ⋅ 𝑺 ⋅ 𝑮 + 𝑬 𝒎𝒐𝒅 𝒒 |𝑬| ≪ 𝒒

Each row is a GSW invariant, all with the same 𝜎

Homomorphic operations work exactly as in GSW

𝐶1 + 𝐶2 encrypts 𝜎1 + 𝜎2, 𝐶1 ⋅ 𝐺
−1 𝐶2 encrypts 𝜎1𝜎2

Multiplication noise term is 𝜎1 ⋅ 𝐸2 + 𝐸1 ⋅ 𝐺
−1 𝐶2

The High-Rate Scheme

Ctxt 𝐶 encrypts ptxt 𝑀 wrt 𝑆 if

𝑺 ⋅ 𝑪 = 𝐞𝐧𝐜𝐨𝐝𝐞 𝑴 + 𝑬 𝒎𝒐𝒅 𝒒 |𝐄| ≪ 𝒒

Encoding is needed to remove noise E on decryption

Two variants, differ in how they encode M

One uses a “nearly square” new gadget matrix

Ptxt, ctxt are both matrices modulo q

Another variant uses scaling instead

Ptxt are matrices modulo some 𝑝 < 𝑞

A Nearly-Square Gadget Matrix

To get high rate, we want to add “just a little
redundancy”, enough to remove a little noise

Want “only a little rectangular” gadget matrix 𝐻

Consider what we need from 𝐹 = 𝐻−1(0):

It needs to be at least somewhat small

It should have full rank over the reals

But also H × 𝐹 = 0 (𝑚𝑜𝑑 𝑞)

So 𝐹 only has a very small rank modulo 𝑞

Recall that 𝐻 is nearly-square

A Nearly-Square Gadget Matrix

Example when 𝑞 = 𝑝𝑡 − 1 for some integers 𝑝, 𝑡

Let 𝐹 =

1 𝑝 𝑝2 𝑝𝑡−1

𝑝𝑡−1 1 𝑝 𝑝𝑡−2

𝑝𝑡−2 𝑝𝑡−1 1 𝑝𝑡−3

⋱
𝑝 𝑝2 𝑝3 1

|F| is small enough to remove noise of size upto
𝑝−1

2

𝐹 has full rank over the reals, only rank one mod 𝑞

𝐻 ∈ 𝑍𝑞
𝑡−1 ×𝑡

is any basis of the null space of 𝐹 mod 𝑞

Can use 𝐻𝑟 = 𝐻⊗ 𝐼𝑟 (for any r), with 𝐹𝑟 = 𝐻𝑟
−1 0 = 𝐹 ⊗ 𝐼𝑟

Can relax 𝑞 = 𝑝𝑡 − 1 to

𝑞 = 𝑝𝑡 − 𝛼 for small 𝛼

The High-Rate Scheme (1st Variant)

Ctxt 𝐶 ∈ 𝑍𝑞
𝑛1×𝑛2 encrypts ptxt 𝑀 ∈ 𝑍𝑞

𝑛0×𝑛0 wrt 𝑆 if

𝑺 ⋅ 𝑪 = 𝑴 ⋅ 𝑯 + 𝑬 𝒎𝒐𝒅 𝒒 |𝐄| ≪ 𝒒

E is small enough so 𝐻 can be used to remove it

Note the dimensions of the various matrices

Rate is 𝑛0
2/𝑛1𝑛2

𝑆′ −𝐼 𝐻

𝑛0 𝑛0

𝑛0

𝑛2

𝒏𝟏 = 𝒏𝟎 + 𝝀

𝜆

𝑪𝑛1
𝑴𝑛0

𝒏𝟐

𝐸𝑛0

𝑛2

𝑛0⋅ ⋅ +=

The High-Rate Scheme (1st Variant)

Ctxt 𝐶 ∈ 𝑍𝑞
𝑛1×𝑛2 encrypts ptxt 𝑀 ∈ 𝑍𝑞

𝑛0×𝑛0 wrt 𝑆 if

𝑺 ⋅ 𝑪 = 𝑴 ⋅ 𝑯 + 𝑬 𝒎𝒐𝒅 𝒒 |𝐄| ≪ 𝒒

E is small enough so 𝐻 can be used to remove it

Compressed Decryption:

𝑋 ≔ 𝑆 ⋅ 𝐶 = 𝑀 ⋅ 𝐻 + 𝐸 (𝑚𝑜𝑑 𝑞)

𝑌 ≔ 𝑋 ⋅ 𝐹 = 𝐸 ⋅ 𝐹 (𝑚𝑜𝑑 𝑞)

Since 𝐻 ⋅ 𝐹 = 0 (𝑚𝑜𝑑 𝑞)

If |𝐸 ⋅ 𝐹| < 𝑞/2 then 𝑌 = 𝐸 ⋅ 𝐹 over the integers

Can multiply by 𝐹−1 to recover 𝐸, then remove it

Compression

Consider many GSW bit encryptions
𝑺 ⋅ 𝑪𝒖,𝒗,𝒘 = 𝝈𝒖,𝒗,𝒘 ⋅ 𝑺 ⋅ 𝑮 + 𝑬𝒖,𝒗,𝒘

𝑢, 𝑣 ≤ 𝑛0, 𝑤 ≤ ℓ = log 𝑞

Enough bits 𝜎𝑢,𝑣,𝑤 for a plaintext matrix 𝑀 ∈ 𝑍𝑞
𝑛0×𝑛0

Let 𝑇𝑢,𝑣 be the 𝑛0 × 𝑛0 singleton matrix 𝑒𝑢 ⊗𝑒𝑣

1 only in entry 𝑢, 𝑣, 0 elsewhere

Also let 𝑇𝑢,𝑣
′ = ∈ 𝑍𝑞

𝑛1×𝑛0

−𝑇𝑢,𝑣

0

𝑛0

𝑛0

𝜆

Note 𝑆′ −𝐼 ⋅ 𝑇𝑢,𝑣
′ = 𝑇𝑢,𝑣

Compression

To pack all the GSW ciphertexts 𝐶𝑢,𝑣,𝑤 we set

𝑪∗ =

𝒖,𝒗,𝒘

𝑪𝒖,𝒗,𝒘
𝒏𝟏×𝒎

⋅ 𝑮−𝟏 𝟐𝒘 ⋅ 𝑻𝒖,𝒗
′ ⋅ 𝑯

𝒎×𝒏𝟐

(𝒎𝒐𝒅 𝒒)

𝑆 ⋅ 𝐶∗ = σ𝑆 ⋅ 𝐶𝑢,𝑣,𝑤 ⋅ 𝐺−1 2𝑤 ⋅ 𝑇𝑢,𝑣
′ ⋅ 𝐻

= σ(𝜎𝑢,𝑣,𝑤 ⋅ 𝑆 ⋅ 𝐺 + 𝐸𝑢,𝑣,𝑤) ⋅ 𝐺
−1 2𝑤 ⋅ 𝑇𝑢,𝑣

′ ⋅ 𝐻

= σ2𝑤 ⋅ 𝜎𝑢,𝑣,𝑤 ⋅ 𝑆 ⋅ 𝑇𝑢,𝑣
′ ⋅ 𝐻 + 𝑛𝑜𝑖𝑠𝑒

= σ𝑢,𝑣 σ𝑤 2
𝑤 ⋅ 𝜎𝑢,𝑣,𝑤
𝑧𝑢,𝑣

⋅ 𝑇𝑢,𝑣 ⋅ 𝐻 + 𝑛𝑜𝑖𝑠𝑒

𝑀

The High-Rate Scheme (2nd Variant)

Ctxt 𝐶 ∈ 𝑍𝑞
𝑛1×𝑛0 encrypts ptxt 𝑀 ∈ 𝑍𝑝

𝑛0×𝑛0 wrt 𝑆 if

𝑺 ⋅ 𝑪 = ൗ
𝒒
𝒑 ⋅ 𝑴 + 𝑬 𝒎𝒐𝒅 𝒒 |𝐄| < ൗ

𝒒
𝟐𝒑

𝑝 < 𝑞, but close (say 𝑝 = 𝑞1−𝜖)

Use scaling to remove noise on decryption

Compression is similar to before

Except that 𝐺−1 2𝑤 ⋅ 𝑇𝑢,𝑣
′ ⋅ 𝐻 is replaced by

𝐺−1 2𝑤 ⋅ Τ𝑞 𝑝 ⋅ 𝑇𝑢,𝑣
′ .

Single Server PIR

Application to Single-Server PIR

Compressible HE easily yields high-rate PIR

But we also want practical efficiency

Our Approach to Single-Server PIR

Start from the basic scheme of [KO97]

Think of 𝑁-entry DB as an 𝑁1 × ൗ𝑁 𝑁1 matrix

Continue recursively on the ൗ𝑁 𝑁1-database

Almost all the work is in the 1st step

0 ×

0 ×
1 ×
0 ×

0 ×
+

𝑁1

A Few More Pieces of Magic

Multiplying a GSW ctxt by high-rate ctxt yields a high-

rate ciphertext of the product

Same for multiplying a GSW ctxt by plaintext M

The products 0 ×
1 ×

yield high-rate encryption of the database

High-rate scheme is additively homomorphic

All we need is to add across the 1st dimension

The same holds for the recursive levels

From Here to Practical Single-Server PIR

Many more tricks

Pre-processing the db to eliminate FFTs

Switching to RLWE

Different gadget matrices 𝐺 in different steps

Using modulus switching

…

The End-Result PIR

Rate is Τ2 3 2 = 4/9

𝑆 is a 2-by-3 matrix (over a ring)

𝐻 is a 2-by-3 matrix (over a ring)

Total work ~ 1.5 multiplies per database byte

Modulo single-precision numbers (upto 60 bits)

Should be 10-20 cycles per byte in software

3x3 2x2

𝑆 ⋅ 𝐶 = 𝑀 ⋅ 𝐻 + 𝐸

The End-Result PIR

First single-server PIR plausibly efficient enough to

handle large databases

Less work than whole database AES encryption

Which you would need (for communication security) if you

used the naïve solution

So we beat the naïve solution not only on bandwidth but

also on server computation

