

Compressible FHE with Applications to PIR

Craig Gentry, Shai Halevi

Algorand Foundation Research

*Work done while at IBM Research

Information Rate of Homomorphic Encryption

Contemporary (F)HE is a bandwidth hog

- Ciphertext is larger than plaintext by at least a large constant factor (sometimes more)
- This is NOT the case for standard encryption
 - Can do |ctxt|~|ptxt|
- Can we hope to get similar efficiency with (F)HE?

Information Rate of Homomorphic Encryption

The only rate-efficient HE is Damgård–Jurik

- ► $ptxt \in Z_{N^r}$, $ctxt \in Z_{N^{r+1}}$, for any desirable r
- -Can grow r to get rate 1- ε for any ε >0

BUt

- only additive-homomorphic
- rather slow (especially in the context of applications)

not quantum safe

What about lattice-based HE schemes?

History of This Work

History of This Work

Back in Yorktown Heights, 2018

This Work

- A "compressible" LWE-based (F)HE
 - **Rate 1-** ϵ , security under LWE with gap $\lambda^{O(1/\epsilon)}$
- Application to single-server PIR
 - First "practical" scheme for large databases
 - Rate 4/9, should be 10-20 cycles per byte in db
 - Faster than whole-database AES encryption
 - Compare to state of the art (SealPIR, [ACLS18]), with rate 1/1000 and >100 cycles/byte

Meanwhile, elsewhere...

Independent Work

Döttling, Garg, Ishai, Malavolta, Mour, Ostrovsky. Trapdoor hash functions and their applications. CYRPTO 2019.

Limited homomorphism, choice of assumptions

Brakerski, Döttling, Garg, Malavolta. Leveraging linear decryption: Rate-1 fully-homomorphic encryption and time-lock puzzles. 2019.

FHE, based on LWE

More general than ours, less practically efficient

What is Compressible (F)HE?

- **Compression**: $c^* \leftarrow Compress(c1,c2,...)$
- Compressed decryption: m1,m2,... CDec(c*)

Rate α : For any circuit Π with long enough output |Compress(Eval(Π , Enc(input)))|<| Π output]/ α

Background: [PVW08] Packing

Recall Regev encryption

- A $(\lambda + 1)$ (pseudorandom) vector encrypts one scalar
- $(\vec{sk}|-1), \vec{ct} = encode(m) + e (mod q), |e| \ll q$
- [PVW08]: Regev-like with rate 1-ε
 - A $(\lambda + r)$ (pseudorandom) vector encrypts r scalars
 - Can grow r to get rate 1-ε for any ε>0
 - $\boxed{S|-I} \cdot \overrightarrow{ct} = encode(\overrightarrow{m}) + \overrightarrow{e} (mod q), |\overrightarrow{e}| \ll q$
 - Each row of this equation is a Regev encryption

Background: "Gadget Matrices" [MP12]

- A rectangular matrix $G \in Z_a^{n \times m}$ A known "public trapdoor" $G^{-1}(0) \in Z_a^{m \times m}$: a. Entries of $G^{-1}(0)$ are small, $|G^{-1}(0)|_{\infty} \ll q$ b. $G^{-1}(0)$ has full rank over the reals *c.* $G \times G^{-1}(0) = 0 \pmod{q}$ For $C \in \mathbb{Z}_q^{n \times m}$, $G^{-1}(C)$ is a redundant version of C
 - An $m \times m$ matrix satisfying a,b, and $G \times G^{-1}(C) = C$
 - Can be found efficiently from C
 - The more rectangular G, the smaller $|G^{-1}(\cdot)|$ can get

Background: [GSW13] HE Scheme

- $-C_1 + C_2$ encrypts $\sigma_1 + \sigma_2$
- $-C_1 \cdot G^{-1}(C_2)$ encrypts $\sigma_1 \sigma_2$
 - Multiplication noise term is $\sigma_1 \cdot \vec{e}_2 + \vec{e}_1 \cdot G^{-1}(C_2)$
 - The scalars σ should be small

Our Construction

The Two Parts of Our Compressible HE

- Low-rate scheme for homomorphism
 - A slight variant of GSW
- High-rate scheme for compression
 - Somewhat similar to the matrix HE scheme of [HAO16]
 - Ptxt, ctxt are matrices of similar dimensions
 - We describe two variants of that scheme
- The two parts "play nice" together
 - They share the same secret key
 - Can pack many GSW ctxts in one high-rate ctxt

The Low-Rate Scheme

- Like GSW, but sk is a matrix, S = [S'| I]
 As in [PVW08]
- If $C \in Z_q^{n \times m}$ encrypts $\sigma \in Z_q$ then $S \cdot C = \sigma \cdot S \cdot G + \vec{E} \pmod{q}$ $|\vec{E}| \ll q$
 - Each row is a GSW invariant, all with the same σ
- Homomorphic operations work exactly as in GSW
 - $-C_1 + C_2$ encrypts $\sigma_1 + \sigma_2$, $C_1 \cdot G^{-1}(C_2)$ encrypts $\sigma_1 \sigma_2$
 - Multiplication noise term is $\sigma_1 \cdot \vec{E}_2 + \vec{E}_1 \cdot G^{-1}(C_2)$

The High-Rate Scheme

• Ctxt C encrypts ptxt M wrt S if $S \cdot C = encode(M) + E (mod q) |E| \ll q$

Encoding is needed to remove noise E on decryption

- Two variants, differ in how they encode M
- One uses a "nearly square" new gadget matrix
 - Ptxt, ctxt are both matrices modulo q
- Another variant uses scaling instead
 - Ptxt are matrices modulo some p < q

A Nearly-Square Gadget Matrix

Λ

- To get high rate, we want to add "just a little redundancy", enough to remove a little noise
 - Want "only a little rectangular" gadget matrix H
- Consider what we need from F = H⁻¹(0):
 It needs to be at least somewhat small
 - It should have full rank over the reals
 - -But also $H \times F = 0 \pmod{q}$
 - So F only has a very small rank modulo q
 - Recall that H is nearly-square

A Nearly-Square Gadget Matrix

Example when
$$q = p^t - 1$$
 for some integers p, t
Let $F = \begin{bmatrix} 1 & p & p^2 & p^{t-1} \\ p^{t-1} & 1 & p & p^{t-2} \\ p^{t-2} & p^{t-1} & 1 & p^{t-3} \\ & \ddots & \\ p & p^2 & p^3 & 1 \end{bmatrix}$
Can relax $q = p^t - 1$ to $q = p^t - \alpha$ for small α

|F| is small enough to remove noise of size up to ^{p-1}/₂
F has full rank over the reals, only rank one mod q
H ∈ Z^{(t-1)×t}_q is any basis of the null space of F mod q
Can use H_r = H ⊗ I_r (for any r), with F_r = H⁻¹_r(0) = F ⊗ I_r

The High-Rate Scheme (1st Variant)

E is small enough so H can be used to remove it

Note the dimensions of the various matrices

The High-Rate Scheme (1st Variant)

• Ctxt $C \in Z_q^{n_1 \times n_2}$ encrypts ptxt $M \in Z_q^{n_0 \times n_0}$ wrt S if $S \cdot C = M \cdot H + E \pmod{q}$ $|E| \ll q$

E is small enough so H can be used to remove it

Compressed Decryption:

$$\blacksquare X \coloneqq S \cdot C = M \cdot H + E \pmod{q}$$

 $\bullet Y \coloneqq X \cdot F = E \cdot F \pmod{q}$

Since $H \cdot F = 0 \pmod{q}$

If $|E \cdot F| < q/2$ then $Y = E \cdot F$ over the integers

Can multiply by F^{-1} to recover E, then remove it

Compression

Consider many GSW bit encryptions $S \cdot C_{u,v,w} = \sigma_{u,v,w} \cdot S \cdot G + E_{u,v,w}$

 $u, v \leq n_0, w \leq \ell = \log q$

Enough bits $\sigma_{u,v,w}$ for a plaintext matrix $M \in Z_q^{n_0 \times n_0}$

-Let $T_{u,v}$ be the $n_0 \times n_0$ singleton matrix $e_u \otimes e_v$

-1 only in entry u, v, 0 elsewhere

Also let
$$T'_{u,v} = \underbrace{\begin{bmatrix} n_0 \\ 0 \\ -T_{u,v} \end{bmatrix}}_{0} \in Z_q^{n_1 \times n_0}$$

Note
$$[S'|-I] \cdot T'_{u,v} = T_{u,v}$$

To pack all the GSW ciphertexts $C_{u,v,w}$ we set $C^* = \sum_{u,v,w} \underbrace{C_{u,v,w}}_{n_1 \times m} \cdot \underbrace{G^{-1}(2^w \cdot T'_{u,v} \cdot H)}_{m \times n_2} \pmod{q}$ $S \cdot C^* = \sum S \cdot C_{u,v,w} \cdot G^{-1}(2^w \cdot T'_{u,v} \cdot H)$

$$= \sum (\sigma_{u,v,w} \cdot S \cdot G + E_{u,v,w}) \cdot G^{-1} (2^{w} \cdot T'_{u,v} \cdot H)$$

$$= \sum 2^{w} \cdot \sigma_{u,v,w} \cdot S \cdot T'_{u,v} \cdot H + noise$$

$$= \left(\underbrace{\sum_{u,v} \left(\sum_{w} 2^{w} \cdot \sigma_{u,v,w} \right) \cdot T_{u,v}}_{Z_{u,v}} \right) \cdot H + noise$$

The High-Rate Scheme (2nd Variant)

• Ctxt
$$C \in Z_q^{n_1 \times n_0}$$
 encrypts ptxt $M \in Z_p^{n_0 \times n_0}$ wrt S if
 $S \cdot C = \lfloor q/p \rfloor \cdot M + E \pmod{q} \mid E \mid < q/2p$

$$p < q$$
, but close (say $p = q^{1-\epsilon}$)

- Use scaling to remove noise on decryption
- Compression is similar to before
 Except that G⁻¹(2^w · T'_{u,v} · H) is replaced by G⁻¹(2^w · [^q/_p] · T'_{u,v}).

Single Server PIR

Application to Single-Server PIR

Compressible HE easily yields high-rate PIR
But we also want practical efficiency

Our Approach to Single-Server PIR

Start from the basic scheme of [KO97] Think of *N*-entry DB as an $N_1 \times N/_{N_1}$ matrix

-Continue recursively on the N/N_1 -database

Almost all the work is in the 1st step

A Few More Pieces of Magic

Multiplying a GSW ctxt by high-rate ctxt yields a highrate ciphertext of the product

Same for multiplying a GSW ctxt by plaintext M

The products 0 × | $1 \times$ yield high-rate encryption of the database High-rate scheme is additively homomorphic All we need is to add across the 1st dimension The same holds for the recursive levels

From Here to Practical Single-Server PIR

- Many more tricks
- Pre-processing the db to eliminate FFTs
- Switching to RLWE

•••

Different gadget matrices G in different steps
 Using modulus switching

The End-Result PIR

-Rate is $(2/3)^2 = 4/9$

S is a 2-by-3 matrix (over a ring)
H is a 2-by-3 matrix (over a ring)

Total work ~ 1.5 multiplies per database byte
 Modulo single-precision numbers (upto 60 bits)
 Should be 10-20 cycles per byte in software

The End-Result PIR

First single-server PIR plausibly efficient enough to handle large databases

Less work than whole database AES encryption

- Which you would need (for communication security) if you used the naïve solution
- So we beat the naïve solution not only on bandwidth but also on server computation

