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Abstract 
Analyzing proteins from single cells by tandem mass spectrometry (MS) has become 
technically feasible. While such analysis has the potential to accurately quantify 
thousands of proteins across thousands of single cells, the accuracy and reproducibility 
of the results may be undermined by numerous factors affecting experimental design, 
sample preparation, data acquisition, and data analysis. Establishing community 
guidelines and standardized metrics will enhance rigor, data quality, and alignment 
between laboratories. Here we propose best practices, quality controls, and data 
reporting guidelines to assist in the broad adoption of reliable quantitative workflows for 
single-cell proteomics. 
  



New approaches and technologies for experimental design, sample preparation, data acquisition, 
and data analysis have enabled the measurement of several thousand proteins across many single 
mammalian cells1–11. These developments open up exciting new opportunities for biomedical 
research12, as illustrated in Fig. 1. Yet, single-cell MS is sensitive to experimental and 
computational artifacts that may lead to failures, misinterpretation, or substantial biases that can 
compromise data quality and reproducibility, especially as the methodologies become widely 
deployed. To minimize biases and artifacts and to maximize data reproducibility in single-cell 
proteomics, we offer guidelines for optimization, validation, and reporting of single-cell 
proteomic workflows and results. 
 

 
Figure 1 | Emerging applications of single-cell proteomics by mass spectrometry. Single-cell 
proteomic measurements can define cell-type and cell-state clusters9, support pseudotime inference, link 
protein levels to functional phenotypes, such as phagocytic activity13, quantify protein covariation1,6, infer 
transcriptional and posttranslational regulation14, and analyze protein modifications, such as 
phosphorylation and proteolytic activities13.  
 



The tandem MS methods for single-cell bottom-up proteomics span a range of 
techniques15, including multiplexed and label-free methods, both of which can be 
performed by data-dependent acquisition (DDA)1,16 and data-independent acquisition 
(DIA)7,10. The initial recommendations presented here are relevant to all of these methods, 
and we will note any exceptions. Our initial recommendations intend to stimulate further 
community-wide discussions that mature into robust, widely adopted practices. Imaging 
MS methods are also advancing and reaching single-cell resolution17, although they differ 
significantly from tandem MS methods and are outside the scope of this white paper. Our 
recommendations are topically grouped into “experimental design”, “data evaluation and 
interpretation”, and “reporting”. 

 

Experimental design 
Best practices for single-cell MS proteomics can effectively build on established practices for 
bulk analysis18,19. Common best practices include staggering biological treatments, sample 
processing, and analytical batches so that sources of biological and technical variation can be 
distinguished and accounted for during results interpretation. Similarly, randomization of 
biological and technical replicates and batches of reagents during sample processing (e.g., 
mass tags for barcoding) are recommended to minimize potential artifacts and to facilitate their 
diagnoses. We also recommend including appropriately diluted bulk samples as technical 
quality controls. The following specific issues are relevant for the design of single-cell proteomic 
measurements. 
 
Single-cell isolation. A primary goal of sample preparation should be to preserve the biological 
state of the cells with minimal perturbations. This can be challenging if cells are adherent, 
require vigorous dissociation or isolation procedures, and especially when they must be isolated 
from native tissues. While generally proteins are more stable than mRNAs, most good practices 
utilized for single-cell RNA-seq isolation, such as quick sample processing at low temperature 
(4oC), are appropriate for proteomics as well. The timing and other parameters of the cell 
isolation procedure may be impactful and so should be recorded in order that technical effects 
associated with sample isolation can be accounted for in downstream analysis. We recommend 
collecting as much phenotypic information as possible from cells prepared and isolated in the 
same manner, including cellular images and any relevant functional assays that can be 
performed. Such phenotypic data allow for orthogonal measures of cell state to be combined 
with mass spectrometry data and thus to strengthen biological interpretations.    
 
Reducing contamination. Minimizing sources of contaminating ion species that 
disproportionately affect the analysis of small samples is critical for single-cell proteomic 
measurements. Contaminating ions can result from many sources, including reagents used 
during sample preparation, impure solvents, extractables and leachables from sample contact 
surfaces, and especially carry-over peptides from previous single-cell or bulk runs that may 
persist within liquid-handling instrumental components, capillaries, and stationary phases, such 



as needle washing solutions and column-retained analytes in liquid chromatography (LC) and 
reservoirs in capillary electrophoresis (CE). Typically, only about 1% of peptides persist on C18 
column resin following a run, and they may appear in subsequent runs as carry-over “ghost” 
signal20. Fortunately, these carry-over peptides generally make a quantitatively insignificant 
contribution to consecutive samples of comparable amounts. However, when bulk samples are 
interspersed with single-cell runs, carry-over peptides from these bulk samples may significantly 
contaminate or even dwarf the peptide content derived from the single cells. Thus, contaminants 
from bulk sample runs are often incompatible with quantitative single-cell analysis on the same 
LC-MS system. Before analyzing single-cell samples, analytical columns must be evaluated 
rigorously and deemed free of carry-over, as previously described5,21. Other non-peptidic 
contaminants, such as leached plasticizers, phthalates, and ions derived from airborne 
contaminants, often appear as singly charged ions and can be specifically suppressed by ion 
mobility approaches7,21–23 or, in the case of airborne contaminants, by simple air-filtration 
devices (e.g., ABIRD)5,24.    

Sample preparation. Ideally, sample preparation should consist of minimal steps designed to 
minimize sample handling, associated losses, and the introduction of contaminants. For bottom-
up proteomic analyses, workflows must include steps of cell lysis/protein extraction and 
proteolytic digestion. Given the picogram-levels of protein present in a single cell, it is crucial to 
minimize contaminants and maximize sample recovery for downstream analysis. Fortunately, 
the composition and geometries of single cells isolated from patients and animals lend 
themselves to disruption under relatively gentle conditions such as exposure to freeze-heat 
cycles5,25 or nonionic surfactants26,27. Such clean lysis methods are preferable over MS-
incompatible chemical treatments (e.g., sodium dodecyl sulfate or urea) that require loss-prone 
cleanup before MS analysis. It can be beneficial to miniaturize processing volumes to the 
nanoliter scale to minimize exposure to potentially adsorptive surfaces2,6, although such 
approaches may have limited accessibility. As such, low-loss sample preparations using 
microliter volumes offer broadly accessible options14,25,28,29. Regardless of the selected 
preparation workflow, it is recommended that cells be prepared in batches that are as large as 
possible to minimize technical variability in sample handling.  

Maximizing sample delivery to mass analyzers For sample-limited analyses, it is especially 
important to maximize ionization efficiency (the fraction of gas-phase ions created from solution-
phase molecules) and the transmission of those ions to the mass analyzer. Lower volumetric 
flow rates produce smaller, more readily desolvated charged droplets at the electrospray 
source, leading to increased ionization efficiency30,31. As such, reducing the flow rate of 
separations from hundreds to tens of nanoliters per minute can increase measurement 
sensitivity, but these gains must be currently achieved with custom-packed narrow-bore 
columns and may compromise robustness and measurement throughput16. Maximizing 
separation efficiency is also important, as narrower peaks increase the concentration of eluting 
peptides and simplify the mixture entering the mass spectrometer at a given time32. A number of 
commercial nanoLC systems and columns provide a reasonable combination of sensitivity and 
efficiency for single-cell proteomics and these are recommended for most practitioners. 
Alternative high resolution separation techniques employing orthogonal separation mechanisms, 
e.g., capillary electrophoresis and ion mobility as well as multidimensional techniques may 



potentially be employed as front-end approaches in MS-based single-cell proteomics11,33,34. 
Increasing ion transmission in the mass spectrometer is generally the purview of instrument 
developers and companies, and future gains in this area are expected to further benefit single-
cell proteomics. 
 
Controls. Experimental designs should provide an estimate of quantitative accuracy, precision 
and background contamination. Precise measurements may arise from reproducing systematic 
biases, such as integration of the same background contaminants. Thus, benchmarking 
quantification accuracy requires positive controls, i.e., proteins with known abundances. One 
approach to benchmarking is incorporating into the experimental design samples with known 
quantitative values to assess quantitative accuracy. These controls may be derived from 
independent measurements based on fluorescent proteins or well-validated affinity reagents. 
Other positive controls include spike-in peptides, proteins, or even proteomes in predefined 
ratios as performed for LFQbench experiments35. When cells from clusters consisting of 
different cell types can be isolated, the relative protein levels of the isolated cells may be 
quantified with validated bulk assays of the cell types present and used to benchmark the in-
silico averaged single-cell estimates. A positive control for sample preparation may include bulk 
cell lysates diluted to the single-cell level. Estimating protein amounts corresponding to single 
cells is challenging, and thus we recommend starting with cell lysate from precisely known cell 
numbers and performing serial dilution to single-cell level5. Negative control samples, which do 
not contain single cells, should be processed identically to the single-cell samples. Such 
negative controls are useful for estimating background noise, especially in the case of highly 
variable cell-types within an experiment. 
 
When matching between runs (BMR) is used to propagate sequence identification, MBR 
controls should be included. Empty samples contain few ions, if any, that may be associated 
with incorrect sequences. Thus using empty samples may lead to underestimating MBR false 
discoveries. MBR may be evaluated more rigorously by applying it to samples containing mixed 
species proteomes or single species proteomes and then estimating the number of incorrectly 
propagated species. Such MBR controls (samples of mixed yeast and bacteria proteomes or 
only yeast proteomes) have been used to benchmark sequence propagation within a run7, and 
similar standards should be used for benchmarking MBR.  
 
Batch effects. Systematic differences between groups of samples (biological) and analyses 
(technical) may lead to data biases, which may be mistaken for cell heterogeneity, and thus 
complicate results interpretation or sacrifice scientific rigor. To estimate and correct batch 
effects, treatments and analytical batches must be randomized whenever possible36. We 
recommend that treatment and batches are randomized, so that batch effects can be corrected 
(estimate and remove batch effects from data) or modeled (e.g. include batch effect as a 
covariate in models). When randomization is not performed, biological and technical factors may 
be fundamentally inseparable. For experiments wherein randomization was not performed, 
downstream statistical analyses should include the batch information as covariates. These 
considerations are similar to those for bulk experiments, which have been previously 



described37. Furthermore, we recommend that all batches include the same reference sample, 
which can be derived from a bulk sample diluted close to a single-cell level.   
 
Statistical power. Studies should be designed with sufficient statistical power, which depends 
on the effect sizes, on the measurement accuracy and precision, and on the number of single 
cells analyzed per condition. Simple experiments with large effect sizes, such as analyzing 
different cell lines, can achieve adequate statistical power with a few dozen single cells. Such 
experiments were common as proof of principle studies demonstrating analytical workflows. In 
contrast, experimental designs including primary cells, smaller effect sizes (e.g., protein 
variability within a cell type6), multiple treatment groups or patient cohorts, require a much larger 
number of single cells to achieve adequate statistical power38–40. Thus, increasing the 
throughput of single-cell proteomics and incorporating power estimates in the experimental 
designs will become crucial as single-cell proteomics matures41,42. 
 
Method optimization. Depending on the priorities of the analysis, a method may seek to 
maximize the number of cells analyzed, the proteome depth achieved, or the number of copies 
sampled per protein. These objectives may best be achieved with different analytical workflows, 
multiplexed versus label-free analysis, different isobaric carrier levels, or by different parameter 
regimes, such as length of peptide separation, ion accumulation times, and intelligent data 
acquisition strategies4,42–45. Choosing optimal method parameters can be time consuming, and 
software for systematic, data driven optimization can speed up such optimizations46.  
 
 

1. Summary: Experimental design recommendations 
1.1. Include positive and negative controls that allow rigorous benchmarking  
1.2. Use strategies to maximize sample delivery while minimizing contamination  
1.3. Design experiments that minimize the influence of batch effects  

1.3.1. Decouple experimental batches from biological covariates, e.g., by 
randomization  

1.3.2. Minimize batch numbers and maximize batch sizes  



Data evaluation and interpretation 
Defining and evaluating reproducibility. We begin discussing data reproducibility and 
evaluation by briefly defining several levels of increasing difficulty, namely repeating, 
reproducing, and replicating47. Repeating a computational experiment or an analysis simply 
consists in using the exact same data, code, software and environment (typically the same 
computer), assuming that these are still available. Reproducing an experiment or analysis is an 
attempt by a different person that will mimic the original setup by downloading data and code, 
without necessarily having access to the same software and environment. Replication 
represents a further challenge where the results are to be obtained using new 
code/implementation/software; it is only possible with extensive and detailed description of the 
performed analyses. This description must include the versions of all software and databases 
used as well as all search parameters, ideally saved as structured documents, e.g., xml.   

The advent of containerised workflows now facilitates analysis replication without the need to go 
through the complicated process of setting up the exact same computational pipeline 
manually48. Still, many data analysis solutions, such as the R computational environment (R 
core team, 2021), are typically used in a non-containerised fashion, making the end-results 
potentially version-dependent and difficult to reproduce, especially in the long term. Thus, we 
recommend introducing workflow managers to facilitate the reproduction of single-cell 
proteomics data analysis. Of note, while the different reproducibility concepts are often 
described in the context of computational experiments and data analysis, they can also be 
extrapolated to experimental workflows. For example, detailed, dynamic, and version controlled 
protocols, such as those on the protocols.io platform, can facilitate experimental reproduction. 
Other containered options, such as Docker images, are a fruitful strategy for standardizing 
computational analysis of complex datasets, with cross-platform compatibility and robust version 
control. 

Batch effects and cellular uniqueness. Two factors should be considered when reproducing 
single-cell protein measurements. First, no two cells are identical. Thus, we may reasonably 
hope to reproduce clusters of cells and trends (such as protein abundance differences between 
cell types or cell states), but not the exact molecular levels for each analyzed cell. Second, 
batch effects may increase the apparent level of reproducibility (when biases are shared 
between replicates, such as peptide adhesion-losses or co-isolation) or decrease it (when 
biases differ between replicates, such as protein digestion biases). Thus, assessments and 
reports of reproducibility need to be specific about precisely what is being reproduced and how 
this may be impacted by batch effects originating from all steps, from cell isolation to data 
processing.     

Evaluating quantitative accuracy. Quantitative accuracy is a measure of how closely the 
measurements correspond to known true values, as in the case of proteomes mixed in 
experimenter-determined ratios, Fig. 2a. When the true abundances are not known, evaluating 
accuracy is not possible and is sometimes confused with repeatability or precision. Yet, these 



quantities can be quite different as illustrated in Fig. 2a. Similarly, high correlation between 
replicates may be interpreted as evidence that the measurements are quantitatively accurate. 
This interpretation is wrong: many systematic errors may lead to erroneous measurements that 
are nonetheless very reproducible. Thus, reproducibility alone is insufficient to evaluate data 
quality. Because single cell proteomics pushes the limits of sensitivity for MS-based single-cell 
proteomics, the quality of measurements depends on the number of ions measured from each 
single-cell population43,44.  For example, if too few ions are sampled, the stochasticity of 
sampling results in counting noise, i.e., low precision estimates and technical variation in  
estimated protein abundances, which should be clearly distinguished from biological variability. 
Such counting noise also affects single-cell RNA-seq methods (that sample even fewer RNA 
copies per cell), and some of the models developed for RNA-seq data may help handle counting 
noise in MS data as well49.  Mixing ratios of 1:1 can be used to evaluate ion sampling and 
precision but not accuracy since this ratio is not sensitive to systematic biases, such as co-
isolation and interference. One option is to evaluate accuracy against ground truth ratios, as 
created by mixing the proteomes of different species in known ratios7,35,50.  As another 
approach, measurements of relative protein abundance by established bulk methods can 
provide useful benchmarks for evaluating corresponding single-cell-level measurements7,9,14. On 
a smaller scale, accuracy may be estimated for a limited number of proteins by spiking 
corresponding peptides at known ratios or using measurements that are as independent as 
possible; such independent measurements include fluorescent proteins whose abundance is 
measured fluorometrically1 or immunoassays with high specificity, such as proximity ligation 
assays that enhance specificity by using multiple affinity reagents per protein51.  

Comparisons between absolute protein intensities conflate the variance due to protein 
abundance variation across the compared samples (conditions) and across different proteins 
and may result in misleading impressions52. For example, the high correlation between the 
proteomes of T cells and monocytes in Fig. 2b may be interpreted as indicating that the two 
proteomes are very similar. Yet, many proteins differ in abundance reproducibly between T cells 
and monocytes, Fig. 2c. Thus, correlations between estimates of absolute protein abundance 
should not be used as benchmarks for relative protein quantification.     

Evaluating quantitative consistency. Outside of carefully designed benchmarking 
experiments, the true protein abundances are unknown, and thus the accuracy of quantification 
cannot be directly benchmarked. However, it is often possible to evaluate the reliability of MS 
measurements based on comparing the quantitative agreement between (i) different peptide 
fragments from the same peptide (Fig. 2d) or (ii) different peptides originating from the same 
protein. For example, the internal consistency of relative quantification for a peptide may be 
assessed by comparing the relative quantification based on its precursors and fragments, as 
shown for single-cell plexDIA data in Fig. 2d. The degree of (dis)agreement may be quantified 
by the coefficient of variation (CV) for these estimates. Similarly, the CV estimated from the 
relative levels of different peptides originating from the same protein may provide a useful 
measure of reliability. This analysis is limited by the existence of alternate proteoforms53,54 but 
nonetheless may provide useful estimates of data quality. Note that this CV is very different 



from the CV computed using absolute peptide intensities or the CV computed between 
replicates. In the latter case, when comparing CVs across different analytical or experimental 
conditions, it is imperative to account for varying dataset sizes; i.e. a fair comparison between 
experimental methods would rely on commonly identified peptides and proteins and the 
accuracy of the measurement thereof, rather than also including peptides and proteins identified 
uniquely in individual experiments. 

 

 
Figure 2 | Evaluating and interpreting single-cell proteomics data. a, Quantitative accuracy of protein ratios between 
samples A and B  measured by label-free DIA analysis relative to the corresponding mixing ratios denoted by dotted lines7. 
Some proteins are quantified with high precision but low accuracy (e.g., RPL9), while others are quantified with high 
accuracy and low precision (e.g., RelA). The proteome of T-cells and monocytes correlate strongly (b) despite the fact that 
many proteins are differentially abundant between the two cell types (c). Data for panels b and c are from Specht et al.25 d, 
Extracted ion current from single-cell MS measurements by plexDIA. Such data allow quantifying peptides at both MS1 and 
MS2 levels, which can be used to evaluate the consistency and reliability of the quantification. This example data from 
Derks et al.7 show that relative levels estimated from precursors (peach color) agree with the relative levels estimated from 
the corresponding summed up fragments (green color). At both MS1 and MS2 levels, 3 estimates are obtained based on 
the 3 scans closest to the elution peak apex. e, Different dimensionality reduction methods approximate the data in 
different ways. Cell states (represented by colors) are projected differently by different methods. PCA loses the non-linear 
cycling effect, tSNE does not correctly capture the distances between the 3 populations and diffusion maps do not capture 
the noise in the data.  
 

Accounting for biological and technical covariates. Single cells differ in size and thus 
protein content. Consequently, cell size is a major confounder for the differences in protein 



intensities between cells6. The basic normalization strategy here consists of subtracting from 
log-transformed protein quantities the respective medians across the proteins quantified14. 
However, differences in total protein amounts between cells lead to differences in the numbers 
of missing values and proteins accurately quantified. Further bias can be introduced by the 
measurement noise affecting protein quantities at the lower abundance range. Thus, the 
processing of single-cell MS proteomic data is likely to be improved in the future with the 
development of more advanced normalization strategies, such as those developed for scRNA-
seq experiments55, which face a similar challenge. To compensate for imperfect normalization, 
we suggest including a variable representative of the cell size, such as total protein content 
estimated from LC-MS data or forward scatter from FACS, as a covariate in downstream 
analyses. 

Managing missing data. One of the common challenges in analyzing single-cell data is 
handling the presence of missing values36,56. These tend to be more prevalent in single-cell 
proteomics, compared to typical bulk experiments, due to differences in size and hence protein 
content between single cells. Another source of missing values is the fact that single-cell 
proteomics operates at the boundary of sensitivity of LC-MS instrumentation, and therefore a 
peptide quantified in some cells is below the detection limit in other cells. The missing data is a 
source of uncertainty that should be propagated through the analysis and ultimately reflected in 
the final conclusions. Many analyses may be conducted using only the observed data (without 
using imputed values), which assumes that the observed data are representative of the missing 
data. Yet, a common strategy for dealing with missing data is to impute missing values prior to 
any downstream analysis. Imputation must take into account the nature of missing data (e.g., 
missing at random or not at random57) in determining appropriate imputation methods. 
Comprehensive imputation methods for single-cell proteomics are yet to be developed and 
benchmarked, but recommendations developed for bulk proteomics methods may serve as 
useful guides57–59. While some recently developed methods for scRNA data may be adapted to 
proteomics, ultimately, the field needs methods which are specifically tailored to the 
mechanisms leading to missing peptides and proteins. Multiple imputation can be used to 
quantify the uncertainty in the results for a given missing data method. Although computationally 
demanding, it is also prudent to impute using different missing data models to further 
characterize the sensitivity of the results to unverifiable assumptions about the missingness 
mechanism. A simple example of this strategy would be to perform downstream data analysis, 
such as PCA, on the imputed data and compare the results to the analysis performed on the 
unimputed data13,14. Results that are insensitive to different types of imputation models are more 
reliable, while those that are contingent on the validity of a particular assumption about 
missingness should be viewed with more skepticism.   
  

Dimensionality reduction. High-dimensional single-cell data are often projected onto low-
dimensional manifolds to aid visualization and to denoise the data, Fig. 2e. Nonetheless, the 
reduced data representations are at best incomplete approximations of the full data. As such, 
different low-dimensional projections may selectively highlight certain aspects of the data while 
obscuring others, Fig. 2e. At worst, they may severely distort the original data60. Thus, we 



recommend using dimensionality reduction only when it is essential. Conclusions derived from 
data reductions should be validated against the high-dimensional data.     

 
While dimensionality reduction representations can be useful for visualization, clustering 
of cell types in low-dimensional manifolds is inadequate for benchmarking quantification. 
Such representations indicate whether the cells cluster in a low-dimensional space, but 
they indicate little about the factors driving the clustering. Some methods, such as PCA, 
are more amenable to interpretation, as opposed to their non-linear counterparts, such as 
t-distributed stochastic neighbor embedding (tSNE)61 or uniform manifold approximation 
and projection (UMAP)62. With all methods, the projection of positive controls, such as 
bulk samples of purified cell types, on the low-dimensional manifold alongside single cells 
provides useful evidence for evaluating the clustering13,14. Thus, we recommend including 
such positive controls when possible. We also recommend evaluating whether principal 
components correlate with technical covariates (such as batches, missing value rate, or 
mass tags) and correcting for these dependencies if needed.  
 
More fundamentally, low-dimensional data reductions often account for only a fraction of 
the total variance in the data and thus may exclude relevant sources of biological 
variability, Fig. 2e. In addition, the separation between cells in low-dimensional manifolds 
is sensitive to many factors; even for the simplest dimensionality reduction methods, 
such as PCA, the separation depends on the number of proteins used in the analysis and 
assumptions about missing data. For nonlinear dimensionality reduction methods like 
tSNE and UMAP, the separation between cell types is sensitive to various tuning 
parameters. Furthermore, only the small distances in tSNE and UMAP manifolds are 
interpretable; the large distances are arbitrarily rendered for visualization purposes. All of 
these factors caution against basing conclusions solely on low-dimensional tSNE and 
UMAP manifolds. Therefore, we recommend performing data analysis in the high-
dimensional space of all quantified proteins. When results are based on a low-
dimensional manifold, such as cluster identification, the corresponding distances in the 
high-dimensional space should also be shown, e.g., as distributions of pairwise distances 
between single cells within and across clusters63. 
 
Managing and propagating uncertainty. As discussed above, assumptions about 
missing data and the application of dimensionality reduction methods can substantially 
influence the final conclusions. Thresholds, such as filters for excluding single cells due 
to failed sample preparation or for excluding peptides due to high levels of interference 
can also influence the results14,36. Such choices should be based on objective grounds, 
such as true and false discovery rates derived from controls. For example, negative 
controls allow establishing objective filters for failed single cells as already implemented 
in multiple pipelines7,14,36. When thresholds are set based on subjective choices, this 
should be explicitly stated and the choices treated as a source of uncertainty in the final 
results. When possible, the sensitivity of the results to all experimental and 
methodological choices should clearly be conveyed. 



 
 

2. Summary: Data evaluation and reporting recommendations  
2.1. Explicitly distinguish between repeatability, reproducibility, and accuracy 
2.2. Use dimensionality reduction sparingly and validate its results 
2.3. The results must reflect the uncertainty in the data, methods, and parameters.  

 
   
 
  

Reporting standards 
 
The goal of reporting is to enable other researchers to repeat, reproduce, assess, and build 
upon published data and their interpretation64. While reproduction and replication do not 
guarantee accuracy, they build trust in the analysis process through verifiability, thus 
strengthening confidence in the reported data and results. Replication requires sufficient 
documentation of the metadata, and a good starting place for reporting metadata are formats 
developed for bulk MS data18,65, including specifically for proteomics data66, those prepared by 
journals67–70 and societies71, as well as for single-cell RNA-seq data72. Nonetheless, single-cell 
MS proteomics data have additional aspects that need to be reported, which are the focus of 
our recommendations. Below, we document the essential information needed to provide value 
to single-cell proteomics data, meta-data, and analysis results. 
 
Experimental design. It is essential to provide readers with the detailed design of the 
experiment, which includes treatment groups, number of single cells per group, sampling, and 
analysis batches, Fig. 3. The experimental design should be reported as a table listing each 
analyzed single cell on its corresponding row and each descriptor in its corresponding column. 
Specifically, columns document biological and technical descriptors, i.e. variables that describe 
the biology of the measured cells and technical factors that are likely to influence the 
measurements. Mandatory biological descriptors contain sample type (such as single cell, 
carrier, empty, or control sample) and biological group, such as treatment condition or 
patient/donor identifier, cell line, organism and organ/part of origin (if cells from multiple 
organisms or multiple organs are assayed) and biological characteristics for multi-sample and/or 
multi-condition studies. Additional biological descriptors may include the cell type and/or cell 
state (e.g., their spatial and temporal information in tissues), physical markers (e.g., 
pigmentation, measured by FACS if available), cell size, and aspect ratio. These descriptors 
apply only to single-cell samples and thus will remain empty for some samples, such as 
negative controls. Note that some of these descriptors might be known before the acquisition of 
the data (such as cell types based on different cell cultures or following from FACS sorting) or 
be the results of downstream analyses (such as cell types or cell states inferred from clustering 
or differential abundance analysis). Mandatory technical descriptors include the raw data 
filenames and acquisition dates, as well as variables that describe the underlying technical 
variability, whether it is expected to be significant compared to the biological variability or not. 



These descriptors include all batch factors related to cell isolation, sample preparation, peptide 
and protein separation (chromatography or electrophoresis batches), operator(s) and 
instruments (when multiple mass spectrometers were used), as well as chemical mass 
tags/labels (in case of labeled quantitation, e.g., TMTpro). Such a sample metadata table is also 
a simple and valuable quality control tool since it allows for verification that the number of rows 
in the table matches the number of cells reported in the paper and that the number and names 
of raw data files extracted from the table is compatible with the files in the data repositories (see 
below). We encourage researchers to document additional descriptors where needed, such as 
variables defining subsets of cells pertaining to distinct analyses. This sample metadata table 
should be complemented by a text file (often called README) that further describes each of 
these descriptors and the overall experiment. We include a standard README file and 
recommend using it to facilitate standardization and data reuse. The README file should 
contain a summary of the study design and the protocols. The measurement units of some of 
the descriptors (such as micrometers for cell sizes) should also be documented in the README 
file, as opposed to encoding them as a suffix in the descriptor’s name.  
 
 

 
Figure 3 | Suggested descriptors of single-cell proteomics samples. The metadata should include 
the experimental design table with rows corresponding to single cells and columns to the mandatory and 
optional features listed here (an example is provided as Supporting File 2). Attributes provided in 
parenthesis are given as examples or for clarification. The green frames highlight mandatory descriptors, 
while the gray ones include a non-exhaustive list of optional descriptors, which may also include spatial 
(e.g., position in tissues) and temporal information for the cells when available. The descriptors (and their 
units, when relevant) should be documented in the experiment’s dedicated README file.  
 
Ideally, the raw and processed MS data should be shared using open formats, such as  HUPO 
Proteomics Standards Initiative community-developed formats dedicated to mass spectrometry 
data: mzML73 for raw data, mzIdentML74 for search results, and mzTab75 or text-based 
spreadsheet for quantitative data. Solely providing binary formats from proprietary software 
should be avoided at all costs. Even when such software is used, un-processed and final result 



files should be exported and shared with the community. Raw data files and search results 
should be made available through dedicated repositories, such as PRIDE66 and MassIVE76. 
Code repositories, such as GitLab or GitHub77, are ideal to store and share code, scripts, 
notebooks and, when size permits, quantitative data matrices. When these become too large to 
be stored directly with the scripts that generate them, they should be made available in 
institutional or general-purpose open repositories, such as Zenodo or Open Science 
Framework, or on publicly available cloud storage. The latter however requires a commitment 
by the data provider to keep the data public. The README file (an example is provided as 
Supporting File 1) containing the description of the experimental design and the different 
locations holding data should be provided in all these locations. The manuscript material and 
method section and/or the supplementary information should provide the experiment identifiers 
and links to all the external data and metadata resources. Editors and reviewers should 
systematically require the deposition of all data, metadata, and analysis details as a condition 
for paper acceptance and publication.  
 
While these data sharing requirements apply broadly to proteomics experiments, some are 
specific to single-cell proteomics (such as single-cell isolation), and some are made more 
important because of the aim to analyze tens of thousands of single cells per experiment42. 
Such sample sizes are required to adequately power the analysis of dozens of cellular clusters 
and states across many treatment conditions and individuals. The large sample sizes, in turn, 
considerably increase the importance of reporting batches, including all variations in the course 
of sample preparation and data acquisition, as well as the known phenotypic descriptors for 
each single cell. These reporting requirements expand the essential descriptors in the 
metadata. Large study sizes also heighten the importance of reporting datasets from 
intermediate processing steps, such as search results and peptides x cells matrices, to reduce 
the computational burden on reproducing individual steps from the analysis.  
 
BOX: Despite its apparent simplicity, file naming deserves thoughtful consideration. Files names 
should be unique (unlikely to be used in many other studies) and linked to the measurements in 
the file; additional good practices are summarized in ref.78. We suggest thinking about file naming 
and file naming conventions to easily identify groups of files pertaining to specific meta-data 
elements or experiments. A systematic file naming convention allows files to be both machine 
and human readable and searchable. File names should avoid using any special characters and 
use the same character (such as a dash or an underscore, rather than spaces) to separate the 
different elements of the file names. If using dates to list files chronologically, the YYYYMMDD 
format should be used. Finally, these naming conventions and any abbreviations used as part of 
the filenames need to be documented in the main README file. 
 
While sharing the data is necessary, it is by no means sufficient. It is well known that the 
processing of data has an important effect on the final results that are used to infer biological 
interpretations. Data processing can hardly (and should not need to) be retro-engineered from 
the result files. Therefore, annotated scripts or notebooks used to process, prepare and analyze 
the data need to be provided with the data. Using software for single-cell proteomics, such as 
the scp R/Bioconductor package36,79, the sceptre python package9,or the SCoPE2 pipeline80, 



can help standardize workflows across laboratories. Packages that allow comparing structured 
and repeatable data processing, including evaluating different algorithms for a processing step, 
provide further advantages36,79. When using GUI-based software platforms that do not support 
exporting the commands that were executed as scripts, audit log and/or parameter files can 
help tracking and later reproducing the different processing steps, including software and the 
versions used at each step. We strongly advise against using non-reproducible software given 
the difficulty in capturing their operation. Given the rapid evolution of the field, simply referring to 
other publications using 'as previously analyzed in [ref]' should also be avoided. When reporting 
results, it should be made clear which data the result refers to. This is, for example, crucial 
when reporting coefficients of variation (CVs), where CVs on log-transformed data are lower 
than on the linear scale. CVs can be used to quantify very different quantities, such as 
repeatability between MS runs or consistency of protein quantification based on different 
peptides, and thus the exact quantity must be specified.  Similarly, researchers should 
systematically report major features of the data that influence the results and how these were 
observed and addressed throughout the data analysis. These typically include missing values 
and batch effects. It is crucial to go beyond the minimalist 'Material and method' sections that 
systematically fail to describe the processing of samples and data to enable their replication. 
 
Often, studies include several sets of raw, identification, and quantitation files, addressing 
different research questions, such as different instruments or MS settings, different cell types or 
growth conditions, and different subjects. A single dump or all files can't be considered an 
acceptable data sharing policy. In such situations, it is advisable to split these in different 
folders, following a consistent structure. The high-level README file, already mentioned above, 
should describe what each of these folders correspond to, and each folder should contain its 
own README file describing its content in detail and the specific points these sets of files aim to 
address.  
 
As described above, data acquisition strategies are inextricably linked to both the number of 
proteins quantified and the quality of quantitation in single-cell proteomics experiments. While 
the reporting of MS acquisition details is not necessarily required for reanalysis of the data, 
acquiring similar data could be impractical or impossible if key details are not reported. This is 
even more evident with the rise of intelligent data acquisition strategies that often have more 
advanced, non-standard parameters or use third party (non-vendor) supplied software. Luckily, 
most raw data files report the parameters used for analysis and some vendors have enabled 
method generation from a raw data file. However, for instances where third-party software 
makes real-time decisions that alter mass spectrometer operation - the software should be 
made available to the broader research community. Ideally this software would be open source, 
but if it needs to be delivered as a compiled executable the underlying algorithms should be 
described in such a way that others could reproduce a similar method. Furthermore, the 
reporting of parameters relevant to the decisions made in real-time as well as the output of real-
time decisions would ideally be provided. These considerations would enable faster 
implementation in labs trying to replicate published results on their own instrumentation. 
 



These reporting guidelines might give the impression that a lot of additional work is expected 
when reporting on studies according to our recommendation. They should not be regarded as a 
burden to be addressed at the end of the research project. Indeed, our recommendations 
merely highlight good scientific practice, to be implemented continuously, starting when the 
research is designed, when the data are acquired, processed, and eventually interpreted. Data, 
meta-data, and analyses documentation and reporting happen at different stages of the analysis 
process, and rely on each other. The investment that we are arguing for here is simply work that 
is spread across the research project, rather than extra work done at the very end of it81. 

 
3. Summary: Reporting standards 

3.1. Use and document descriptors as part of the experimental design table to 
summarize how and why the experiments were conducted.  

3.2. Share all data, metadata, and processed data in recommended repositories to 
accurately describe what was generated as part of an experiment. 

3.3. Share data processing and analysis notebooks or scripts that are sufficient for 
repeating the complete analyses presented in a manuscript. 

3.4. Include a README file that describes all the data, metadata, and scripts and 
cross-reference the remote resources that store all the experiment’s outputs.  

Conclusions and perspectives 
The adoption of these guidelines by the scientific community and their promotion by journals 
and data archives is essential for establishing solid foundations for the emerging field of single-
cell MS proteomics and to uphold scientific rigor. The suggested reporting standards will 
facilitate all levels of replication and thus promote the dissemination, improvement, and adoption 
of single-cell technologies and data analysis. Sound data evaluation and interpretation will 
further promote the reuse of single-cell proteomics data and results outside of the labs that 
currently drive the domain, and increase secondary added-value of our experiments and efforts. 
We hope and expect that the initial guidelines offered here will evolve with the advancement of 
single-cell proteomics technologies82, the increasing scale and sophistication of biological 
questions investigated by these technologies, and the integration with other data modalities, 
such as single-cell transcriptomics, spatial transcriptomics, imaging, electrophysiology, 
prioritized MS approaches, PTM-level and proteoform-level (i.e., top-down) single-cell 
proteomics methods. We invite the community to discuss these guidelines and contribute to 
their evolution. We hope to facilitate such broader contributions via an online portal at: single-
cell.net/guidelines 
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