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AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Biological functions arise from protein interactions, which are
reflected in the natural variation of proteome configurations across
individual cells. Emerging single-cell proteomics methods may decode
this variation and empower inference of biological mechanisms with
minimal assumptions.

We normally think of experiments as procedures carefully designed by scientists and engi-

neers. However, some of the best experiments arise from natural processes. For example, evo-

lution and gene segregation during reproduction can be seen as natural experiments that have

revealed much about protein functions and about genetic associations with diseases [1]. A

salient advantage of such natural experiments is that they provide empirical evidence that is

inaccessible to human designed experiments because of ethical and technical limitations.

Single-cell proteomics will open a window to a vast data trove of natural experiments: the

proteome configurations that reflect molecular interactions within and between our cells.

Indeed, signals received by cells in our bodies are transmitted via networks of proteins, and the

relationships among these proteins reflect the underlying regulatory process. The transmission

often involves protein cleavages, additions of chemical groups (e.g., a phosphate group), and

binding interactions among different protein partners. These molecular events shape the

covariation among the involved proteins, and thus the protein configurations of single cells

may report on biological functions and regulatory networks [2]. Therefore, the patterns of pro-

teome configuration across single cells may reveal biological functions and their regulation.

One such example is the possibility of inferring cell type–and cell state–specific protein

complexes from covariation of protein levels across single cells. Covariation among the sub-

units of protein complexes is well established from analyzing bulk samples composed of mixed

cellular states. Such covariation was among the first demonstrated results from Single-Cell

ProtEomics by Mass Spectrometry (SCoPE-MS) [3]. Covariation is observed not only among

the subunits of protein complexes but also among functionally related proteins that do not

interact directly, and thus covariation alone is not a reliable indicator of protein interaction.

Rather, it can be combined with additional measurements and informative features to infer

direct regulatory interactions [4]. Compared to bulk measurements, single-cell proteomics

offers 3 major advantages for exploring protein complexes. First, it allows inferring protein

relationships specific to each of the cell types making up a complex tissue. Second, it can
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observe the full dynamic range of protein variation across cells, which is decreased by the aver-

aging of bulk measurement. This full range should support stronger and more reliable correla-

tions, although this possibility has not yet been demonstrated. Third, single-cell proteomics

affords many data points (across single cells) to support robust estimates of covariation and

may even support more general estimates from the joint distributions of protein abundances

(Fig 1). Such estimates may allow modeling complex relationships without assuming the func-

tional form of models and thus can reduce assumptions.

Another example of learning from single-cell variation is the inference of transcriptional

regulatory interactions. These are among the most studied regulatory interactions over the last

2 decades because of the wealth of transcriptomic measurements [5]. Nonetheless, the joint

analysis of proteins and transcripts across single cells can reveal regulatory interactions that

cannot be identified only from single-cell RNA measurements [6,7]. Furthermore, joint analy-

sis of protein and mRNA levels allows identifying proteins whose abundances are not well pre-

dicted by the corresponding RNA levels, such as the tumor suppressor p53 [7]. This type of

inference must account for measurement noise, which demands new methods for modeling

noise in single-cell proteogenomic analysis.

Distinguishing between direct and indirect regulation

Analysis of single-cell protein variation may also enable a long elusive goal: the quantitative

characterization of the direct protein interactions that weave the signal transduction networks

in our cells. While genomics identifies many causal genetic associations, these associations are

indirect [1]. Such indirect associations are mediated by many unobserved molecules and can

be explained by very many different models. This multiplicity of models limits the utility of

indirect causal associations [1].

By contrast, single-cell measurements of proteins may enable inference of direct regulatory

interactions with minimal assumptions, as shown in Fig 1. Analysis of joint distributions of

protein abundances can directly reveal regulatory interactions without depending on model

assumptions. Specifically, conditioning the joint distribution of proteins X and Y and a con-

founder protein Z may reveal that while X and Y are correlated, they do not directly regulate

each other (Fig 1A). Alternatively, the joint distribution of A and B may not be correlated

unless conditioned on protein Z, which suggests a different regulatory model (Fig 1B). Impor-

tantly, this analysis does not require assuming specific types of models or functional depen-

dencies. Rather, it requires quantitatively accurate protein measurements across many single

cells. This requirement is becoming feasible due the technological advances discussed below.

Technological requirements and frontiers

Learning from the patterns of single-cell protein variation requires accurate single-cell protein

measurements. Indeed, ideas described here have previously surfaced in the literature [8], but

their implementation has remained limited by the type and accuracy of the available high-

throughput single-cell measurements. This is because the data analysis outlined above, such as

conditioning joint distributions on confounders, is much less tolerant to measurement noise

than the currently popular single-cell analysis methods, such as cell type clustering and

dimensionality reduction.

Therefore, realizing these possibilities requires that we advance the technology. First, we

must make the state-of-the-art methods widely accessible via detailed protocols, computational

resources, and community standards [9]. Second, we must continue to increase the accuracy

of the measurements by (i) increasing the sampling efficiency of protein molecules and thus

reducing counting errors; (ii) reducing the potential for measurement interferences; and (iii)
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using control and reference samples that may allow reducing the impact of experimental arti-

fact, as in the case of ratiometric measurements. This second requirement will take advantage

of exciting opportunities for innovation that can increase the depth and accuracy of proteome

profiling by intelligent data acquisition and parallel analysis of both peptides and single cells

[10].

In addition to increasing the accessibility and accuracy, single-cell proteomic technologies will

develop toward measuring protein dynamics, activities, and localization. For example, protein

synthesis and degradation dynamics may be encoded into the proteomes of single cells by pulsing

at different time points amino acids labeled with heavy isotopes. These encoded dynamics can be

decoded at the end of the experiment by MS measurements of the abundances of proteins labeled

with each isotopic composition. Protein localization may be measured by physically isolating cel-

lular organelles, while posttranslational modifications (PTMs) may be analyzed by using PTM-

enriched isobaric carriers [2,9]. Such analysis requires future technological advances, which will

be powered by major opportunities for innovation [10].

Fig 1. Inference of direct regulatory interactions with minimal assumptions. (A) The observed joint distributions of proteins X and Y across

many single cells are consistent with 2 models in which protein Z is a confounder. (B) The joint distributions of proteins X and Y across many

single cells are consistent with a “collider” model, in which X and Y collide at Z, inducing dependence conditional on Z. The arrows indicate

directions of causality (positive or negative regulation), and in the collider model one of the arrows corresponds to positive and the other to a

negative regulatory effect. Such inference of direct regulatory interactions requires no specific assumptions, but it does require accurate

measurements across many single cells.

https://doi.org/10.1371/journal.pbio.3001512.g001
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