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ABSTRACT: The performance of ultrasensitive liquid chromatography and tandem

DO-MS

mass spectrometry (LC-MS/MS) methods, such as single-cell proteomics by mass / Dashboard\ ___________

spectrometry (SCoPE-MS), depends on multiple interdependent parameters. This
interdependence makes it challenging to specifically pinpoint the sources of problems
in the LC-MS/MS methods and approaches for resolving them. For example, a low
signal at the MS2 level can be due to poor LC separation, ionization, apex targeting,
ion transfer, or ion detection. We sought to specifically diagnose such problems by
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interactively visualizing data from all levels of bottom-up LC-MS/MS analysis. Many

software packages, such as MaxQuant, already provide such data, and we developed an

open source platform for their interactive visualization and analysis: Data-driven Optimization of MS (DO-MS). We found that
in many cases DO-MS not only specifically diagnosed LC-MS/MS problems but also enabled us to rationally optimize them.
For example, by using DO-MS to optimize the sampling of the elution peak apexes, we increased ion accumulation times and
apex sampling, which resulted in a 370% more efficient delivery of ions for MS2 analysis. DO-MS is easy to install and use, and
its GUI allows for interactive data subsetting and high-quality figure generation. The modular design of DO-MS facilitates
customization and expansion. DO-MS v1.0.8 is available for download from GitHub: https://github.com/SlavovLab/DO-MS.
Additional documentation is available at https://do-ms.slavovlab.net.

KEYWORDS: optimizing mass spectrometry, ultrasensitive proteomics, single-cell analysis, single-cell proteomics by mass spectrometry,
quality control, visualization, MaxQuant, method development, R, Shiny

B INTRODUCTION

Analytical methods combining liquid chromatography and
tandem mass spectrometry (LC-MS/MS) allow for unparal-
leled identification and relative quantitation of the protein
components of biological systems.'~* Advances in LC-MS/MS$
have enabeled analyses of protein complexes and their
functions,”™” regulation of protein synthesis and alternative
RNA translation,'”"" rare cells in blood,'*'® and protein
conformations."*™'® The increasing sensitivity,'”~>* through-
put, and robustness’* of LC-MS/MS set the stage for
quantifying thousands of proteins across many thousands of
single cells, providin% data with transformative potential for
biomedical research.”>*’

While LC-MS/MS proteomics methods are very powerful,
they require extensive optimization of interdependent instru-
ment parameters. Optimization is particularly critical for
quantifying low-input samples, such as single-cell proteomes
and exosomes. LC-MS/MS optimization and quality control
(QC) can be performed by manually inspecting the features of
peptide standards®®™** within MS instrument software (e.g.,
Thermo Scientific Xcalibur) or by specialized software
packages. Following the National Institute of Standards and
Technology’s QC data analysis pipeline,”> numerous QC
programs have been developed. These programs capitalize on
advances in search engines,”* video analysis,” direct analysis of
raw data,®® and database management tools’ to track
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instrument performance over time and assist in duty cycle
optimization. Other platforms, such as MSStatsQC 2.0, employ
specialized statistical methods to differentiate normal variation
in instrument performance from novel variation as a means to
detect instrument problems early.”® A comprehensive review of
LC-MS/MS QC and optimization tools has been published by
Bittremieux et al.”’

We found these tools useful in developing single-cell
proteomics by mass spectrometry (SCoPE-MS), which
combines TMT-labeled peptides from single cells with a
TMT-labeled carrier channel to enable quantifying proteins
across many single cells.*7”*° However, none of these tools
provided all of the metrics needed for optimizating our
SCOPE-MS analysis.** This motivated us to develop DO-MS, a
highly modular and interactive environment for optimizing
ultrasensitive LC-MS/MS methods.

DO-MS aims to diagnose problems and suggest solutions as
specifically as possible. To illustrate this point, here we
describe concrete examples, including optimizing apex
targeting, assessing contamination, and evaluating SCoPE-MS
results. In order to enable specific diagnosis, the DO-MS
dashboard juxtaposes distribution plots of data from multiple
levels of LC-MS/MS analysis, including retention lengths at
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Figure 1. DO-MS-assisted optimization of instrument parameters leads to increased apex targeting, ion delivery, and peptide identification rates.
(a) Distributions of apex offsets for three runs on 90 min gradients. Each injection was of 1 yL from the same vial and corresponds to 1 X M

dilution of a SCoPE-MS master sample as described by Specht et al.””

All LC parameters and instrument parameters were set to be the same except

for the max fill time. (b) The relative efficiency of delivering ions for MS2 analysis was estimated by the intensities of RI. For each peptide identified
across all three experiments, the RI intensity was divided by the corresponding RI intensity for 250 ms fill time, and the results for all peptides are
shown as distributions on a log, scale. (c) The number of peptides identified at each PEP threshold is shown as a rank sorted list for the three fill
times. This display shows the number of peptides for all levels of confidence of identification, as quantified by the PEP. The plots from panels (a—c)
can be found in the “Ion Sampling” tab and in the “Peptide Identifications” tabs of DO-MS, respectively. The plot for panel (b) was normalized to
the 250 ms experiment specifically for this figure to emphasize the increased ion accumulation.

the base and mid-height, intensity of all ions and of precursors
selected for MS/MS, elution peak apex offset, number of MS/
MS events, MS2-level coisolation (i.e., parent ion fraction),
number of identified peptides at all confidence levels, and
quantification benchmarks. These features are organized
thematically in the dashboard for ease of reference. DO-MS
has already enabled us to quickly identify problems in our
methods, their exact origin in the workflow, and potential
solutions. Below, we share DO-MS along with a selection of
examples from our work in the hope that it will facilitate a
wider adoption and advancement of single-cell proteomics. We
also hope that the modular nature of our platform will enable
the community to add new modules for optimizing LC-MS/
MS for an expanding array of applications.

B MATERIALS AND METHODS

Implementation

DO-MS is implemented as a Shiny app, built using R.*" All
plots are generated using the ggplot2 package.*”** Shiny was
chosen for its interactivity, allowing data to be dynamically
subset based on experiment or confidence of peptide spectral
match. Additionally, this package can be run from the
command line or the RStudio IDE. DO-MS v1.0.8 is available
from the Slavov Lab GitHub page: https://github.com/
SlavovLab/DO-MS.

DO-MS 1.0.8 requires R 3.5.2, Shiny 1.2.0, shinyWidgets
0.4.4, shinyDashboard 0.7.1, dplyr 0.7.8, tidyr 0.8.2, ggplot2
3.1.0, lattice 0.20-38, knitr 1.21, tibble 2.0.1, reshape2 1.4.3,
readr 1.3.1, rmarkdown 1.11, DT 0.5, stringr 1.3.1, yaml 2.2.0,
viridisLite 0.3.0, and pacman 0.5.0. The p_load() function of
the pacman package will automatically check and install
missing packages to ensure DO-MS has the necessary
dependent packages to run. DO-MS modules are maintained
for MaxQuant version 1.6.0.16. Additionally, Firefox 66.0 or
Google Chrome are recommended for the best user
experience. DO-MS will be maintained by the Slavov Lab to
ensure continued compatibility with MaxQuant.

Data Preprocessing

The experimental data used here were generated as part of
developing and optimizing minimal proteomic sample
preparation (mPOP)*’ and SCoPE-MS,** and a full
description of the experiments can be found in Specht et
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al.”” Samples generated for instrument and method optimiza-
tion were prepared from U937 and Jurkat cells that were lysed
in HPLC-grade water according to the mPOP protocol: a 15
min freeze step at —80 °C, followed by a 10 min heating step at
90 °C. Following lysis, samples were digested at 37 °C for 3 h
with 10 ng/uL of Promega Trypsin Gold in 100 mM TEAB.
The bulk digested material was then serially diluted and
labeled in an 11-plex design scheme with the following
approximate inputs in each channel: 5000 U937 cells (126);
5000 Jurkat cells (127N); all reagents, but no cells (127C); all
reagents, but no cells (128N); six alternating channels of 100
U937 cells or 100 Jurkat cells (128C-131N); no reagents or
cells (131C). 1% of this bulk 100 uL sample was then injected
to simulate a single SCoPE-MS experiment with two 50-cell
carrier channels and six single-cell channels. Briefly, all samples
were separated on a 25 cm length X 75 ym Waters nanoEase
column (1.7 pm resin, Waters PN:186008795) run by a
Proxeon Easy nLC1200 UHPLC (Thermo Scientific). All
samples were analyzed by a Thermo Scientific Q-Exactive mass
spectrometer. Prior to running DO-MS, RAW files were
searched using MaxQuant 1.6.0.16.**~*¢ The human SwissProt
FASTA database (39,748 entries, downloaded 5/1/2018) was
used for searching data from U-937 and Jurkat cells. MaxQuant
searches were conducted as previously described.””** Trypsin
was specified as the digest enzyme, and a maximum of two
missed cleavages were allowed for peptides between 5 and 26
amino acids long. Methionine oxidation (+15.99491 Da) and
protein n-terminus acetylation (+42.01056 Da) were specified
as variable modifications. The allPeptides.txt, evidence.txt,
msmsScans.txt, and msms.txt files output by MaxQuant were
imported by DO-MS for analysis and figure generation. In
order to make the greatest use of the DO-MS platform, users
must enable the Calculate Peak Properties option on the
advanced submenu of MaxQuant’s Global Parameters tab.***¢
This option can be automatically enabled by using the
mgqpar.xml files from the Supporting Information of this
manuscript. Searches conducted without enabling this option
will not generate plots for the elution peak apex offset and peak
width at full width half max panels of the DO-MS dashboard.
DO-MS is currently optimized for MaxQuant search results,
but users can customize it to work with alternative search
engine outputs by specifying the column headers correspond-
ing to the data selected for visualization.
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Figure 2. Diagnosing reduced peptide identification due to co-eluting contaminants. Plotting the cumulative intensities for all +1 ions detected
during the survey scans (a) alongside the number of peptides identified across the gradient (b) can reveal correlations between co-eluting
contaminants and reduced peptide identification. (c) Number of all detected ions by charge states. (d) Peptides were rank sorted by their PEPs to
display the number of identified peptides across all levels of confidence. The plots from panels (a—c) can be found within the “Contamination” tab
of DO-MS, while the plot shown in panel (d) can be found in the “Peptide Identifications” tab.

All data sets associated with this manuscript have been
deposited at massIVE with the following IDs: Figure 1, apex
offset data: MSV000083316; Figure 2, contamination data:
MSV000083317; Figure 3, controlled comparison data:
MSV000083319; and Figure 4, SCoPE-MS data:
MSV000083318.

Visualization

DO-MS’s diagnostic plots have been organized into the
following five categories: chromatography, ion sampling,
peptide identifications, contamination, SCoPE-MS diagnostics,
and DART-ID."” Data are visualized as full distributions using
vertically oriented histograms to avoid kernel-smoothing
issues. This approach is advantageous, as distinct data sets
may have similar summary statistics but markedly different
distributions of data points.***’ The full distributions allow
subpopulations of ions to be identified, which can be key to
optimizing LC-MS/MS performance. Additionally, these
distributions can be conditioned on common ions, allowing
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for a more principled comparison, as discussed in the Results
and Discussion section.

Data imported into DO-MS can be subset based on the
confidence of peptide spectral match assignment and experi-
ment name using a slider and dynamically populated list,
respectively. DO-MS relies on the posterior error probability
(PEP), as estimated by MaxQuant, to indicate the confidence
of a given peptide spectral match (PSM). The PEP value can
be thought of as the probability that the identified peptide was
not in the mass spectrometer at the time the spectra were
acquired.’® By default, DO-MS labels experiments by their
corresponding raw file names. If desired, experiments can be
labeled via a text-input field. Such labeling can enhance the
clarity of figures and thus facilitate their analysis and broader
interpretability if the figures are intended for publication.

Report Generation and Figure Output

To facilitate the sharing of experimental results, users can
output the DO-MS dashboard plots as an HTML report which
reflects all data subsetting performed in the app as well as user-
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Figure 3. Controlled comparison of peptide abundances across experiments. Without controlling for the composition of the two populations being
compared, trends in the data can be misread. In this case, when comparing the distribution of precursor intensities for all peptides identified in each
sample (a), sample 1 appears to have more highly abundant peptides. However, when ensuring that the comparison is only based on those peptides
identified in each sample (b), the opposite trend becomes apparent, namely, that the peptide species in sample 2 were more highly abundant. Both
of the plots shown in Figure 3 can be found in the “Ion Sampling” tab of DO-MS.
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Figure 4. Evaluating low-input samples, such as SCoPE-MS sets. (a) The distributions of rRI intensities can indicate the relative amount of
peptides and the efficiency of sample preparation for each channel. (b) The matrix of pairwise correlations among all all channels of a SCoPE-MS
set can be used to benchmark relative quantification within that set. In (a) we expect single-cell channels to have relative rRI intensities that are S0-
fold lower than the S0-cell carrier channels (about 1.7 on logy, scale). In (b), we expect single-cell channels to correlate positively with single-cell
channels and carrier channels that contain their respective cell type, while cross-cell-type correlations for single-cell channels are expected to be
negative. Both of the plots shown in Figure 4 can be found in the “SCoPE-MS Diagnostics” tab of DO-MS.

supplied experimental labels. Report generation is achieved via template.r file to a new folder in the “modules” directory. After
a button in the “Report Generation” dashboard tab. See the reloading the app, the new plot will automatically appear in the
Supporting Information for an example HTML report. DO-MS dashboard in the user-specified tab. More details for
Dashboard plots can also be saved as individual .png or .pdf this process can be found on the Github project page: https://
files for use in presentations and publications directly from the github.com/SlavovLab/DO-MS.

dashboard tabs on which they appear.
B RESULTS AND DISCUSSION

Sampling the Elution Peak Apex

User Customization
We built DO-MS as a modular application to make dashboard

customization and expansion as easy as possible. Each plot is LC-MS/MS methods aim to sample the elution profile of each
generated from a separate R file, and a template file has been peptide at its apex because such sampling maximizes the
provided as a guide for users interested in including additional number and purity of sampled ions.”’ However, no existing
plots in their dashboard. Adding plots to the DO-MS method can target the apex of every ion. Rather, instrument
dashboard can be accomplished by adding a customized parameters can be optimized to maximize the fraction of ions
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J. Proteome Res. 2019, 18, 2493—2500


http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00039/suppl_file/pr9b00039_si_001.zip
https://github.com/SlavovLab/DO-MS
https://github.com/SlavovLab/DO-MS
http://dx.doi.org/10.1021/acs.jproteome.9b00039

Journal of Proteome Research

sent for MS/MS at or close to their apexes. DO-MS facilitates
this optimization by visualizing the distribution of apex offsets
(i.e., the time offset between the apex of an ion and the time
when it is fragmented) as estimated by MaxQuant.

The visualization of apex offsets, as shown in Figure Ia,
enabled us to rationally optimize the instrument methods for
analyzing SCoPE-MS sets. To resolve the reporter ions (RI) of
a TMT 11-plex, we perform the MS2 scans at 70,000 resolving
power, which on our Q-exactive takes 256 ms.”” Since Q-
exactive instruments can perform the ion accumulation and
MS scan in parallel, we started by setting our max fill (ion
accumulation) times for MS2 scans to be 250 ms.”” This
setting resulted in sampling most ions for MS2 scans too early,
significantly before the apexes of their elution peaks (Figure
la). We reasoned that such premature sampling could be
alleviated by elongating the duty cycle either by increasing the
number of MS/MSed ions per cycle or by increasing the max
fill times. Indeed, increasing the fill times to 500 ms and 1000
ms, while keeping all other parameters constant, increased the
fraction of ions whose elution peaks are sampled at or near the
apex (Figure la).

The increased fill times improved apex targeting and
increased ion delivery for MS2 analysis (Figure 1b), leading
to an increased number of identified peptides at all levels of
confidence, as shown in Figure lc. Rather than displaying the
number of identified peptides at an arbitrary confidence cutoff,
DO-MS plots all peptides rank-sorted by the posterior error
probability (PEP) of their identification (Figure 1lc). These
curves show the number of identifications for all levels of
confidence. The dashed gray line on the plot denotes peptides
with a 99% probability of having been correctly identified.
Such curves offer insight into low-confidence peptide
identifications which might be boosted by incorporating
additional features, such as retention time.***’

This example is consistent with previous observations that
longer accumulation times can increase the number of
confident peptide identifications for lowly abundant sam-
ples.'”* Furthermore, this example underscores that fill times
can strongly influence apex targeting. Such optimization of
duty cycle and apex targeting is sample and system dependent,
and thus it requires methods that allow for rational
optimization of all levels of MS analysis, such as DO-MS.

Characterizing Contamination

Contaminants of nonprotein origin are very common in
proteomics experiments.”*>* At best, they are lowly abundant
and elute separately from peptides; at worst, they are highly
abundant and elute with peptides, undermining ionization,
charge determination, and identification. Low-input samples
are especially sensitive to contaminants, as the ratio between
target and contaminant ions is more likely to be lower. DO-MS
displays contaminants across the LC gradient by plotting the
intensity of ions with a +1 charge state (z = 1) for each minute
of the gradient. This type of data presentation allows users to
distinguish between hydrophilic and hydrophobic contami-
nants.

Due to the mosaic structure of the DO-MS dashboard,
potential relationships between factors such as contaminant
ion intensity and peptide identifications can be easily seen, as
exemplified in Figure 2. The juxtaposition of summed
precursor intensities for contaminant ions (Figure 2a) and
for peptides (Figure 2b) shows a clear correlation: Sample 2
has more hydrophobic contaminants, and their elution
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coincides with reduced peptide identifications. This correlation
immediately suggested that the lower identification rates for
sample 2 were due to its contamination, which we
subsequently identified to be polyethylene glycol (PEG).

As an additional diagnostic plot for contamination, DO-MS
displays the number of ions detected by the instrument by
charge state, as shown in Figure 2c. This compact display is
particularly useful for comparing ions likely to be contaminants
(with charge +1) and those likely to be peptides (with charge
>2) across many runs. The negative impact of these numerous
contaminant jons on peptide identifications can be seen in
Figure 2d. Once the presence of contaminants has been
diagnosed with DO-MS, several existing software tools can be
applied to more fully characterize the type of contamination
present in each sample.”*"’

Controlled Sample Comparisons

While distributions are much more informative than their
summary statistics, comparing distributions for different
populations can still be misleading. Thus, when comparing
the distributions plotted by DO-MS, it is important to control
for (condition on) the composition of the distributions, for
example, the peptides comprising each distribution. The
importance of such controlled comparison is exemplified in
Figure 3 with an experiment testing the effect of calcium
addition on trypsin digestion. For this experiment, a sample
was split into two equal parts, samples 1 and 2. They were
processed in identical ways, except that 50 mM CaCl, was
added to sample 2 during its digestion. Both samples were
digested with 20 ng/uL Promega Trypsin/LysC mix. The
distributions of all peptide abundances and the corresponding
median abundances (Figure 3a) may be interpreted to suggest
that sample 1 resulted in more efficient delivery of peptides to
MS analysis, and the addition of calcium was detrimental. This
comparison, however, is complicated by the differential
number of PSMs in each sample (sample 1: 817; sample 2:
1258). By conditioning the comparison on the common
peptides, the opposite conclusion is indicated: The addition of
calcium chloride to sample 2 during its digestion resulted in
more efficient delivery of peptides to the instrument.

Low-Input Sample Diagnostics

In the process of developing mPOP”’ and SCoPE-MS,* we
discovered a number of helpful metrics for diagnosing SCoPE-
MS sample preparations and optimizing instrument parameters
for low-input samples. To optimize SCoPE-MS, we used
standards from which a single 1 yL injection (1% of the bulk
sample volume) corresponds to the peptide input present in a
single SCoPE-MS 11-plex set. Such samples allowed us to
assess and optimize instrument performance independent of
sample variability (since we could inject multiple aliquots of
the same sample) and to assess quantification, as we had a
strong expectation that the pseudo-single-cell channels should
correlate positively to their corresponding carrier channel.
Below we demonstrate diagnosis of such a sample by DO-MS;
the sample preparation is described in detail by Specht et al.”’
Briefly, the sample was composed of 10 TMT channels
containing serial dilutions of digested cell lysate from two cell
types: U-937 (monocytes, denoted by U) and Jurkat (T-cells,
denoted by J). This reference standard is diluted so that 1 uL
corresponds to a SCoPE-MS set and contains peptide input
equivalent to about 106 single cells (20—50 ng of total
protein). The reference samples have two carrier channels,
each of which contains peptide input comparable to 50 cells of
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each type, and 6 channels contain peptide inputs comparable
to individual single cells, 3 of each type.”’

The distribution of RI intensities from a SCoPE-MS set can
be an informative indicator. Low RI intensities may be due to
failed cell isolation, digestion, or labeling. Higher than expected
RI intensities may be due to background contamination or
cross-labeling. Such deviations may be diagnosed simply from
the distributions of RI intensities. However, these distributions
are quite broad since the RI intensities for quantified peptides
often span several orders of magnitude. To decrease this
dynamic range, DO-MS plots the distribution of relative RI
(rRI) intensities: The RI intensities of each peptide are
normalized (divided) by the RI intensity in the most abundant
channel (the one with the highest median RI intensity, Figure
4a). This visualization clearly indicates whether the single-cell
channels have about a 50-fold lower median intensity than a
50-cell carrier channel as well as the background signal
(including isotopic contamination) in the channels without a
cel. Such a diagnostic is helpful for determining label-
quenching efficiency as well as the efficiency of cell sorting
by FACS. By examining the rRI intensities present in channels
without a cell, one can also assess the amount of background
signal present and the degree of isotopic carryover.

The quantitative accuracy of SCoPE-MS sets can be
benchmarked by comparing the relative quantification from
the carrier channels and single-cell channels as quantified by
the correlations among them. DO-MS computes all possible
Pearson pairwise correlations, that is, the correlation matrix for
the column and row-normalized RI intensities. This matrix can
serve as a complementary diagnostic for relative quantification
in SCoPE-MS sets based on the expectation that cells of the
same type should correlate positively with each other but not
with different cell types. Furthermore, blank channels should
not correlate positively with either the single-cell or carrier
channels. This expectation is consistent with the correlations
shown in Figure 4b. This correlation matrix can also be useful
for identifying cross-contamination, cross-labeling, and on-
column carryover. In the context of our control sets, the
correlations between channels corresponding to the cells from
the same cell type can be interpreted as reliability estimates,
that is, estimating the fraction of variance due to signal.54 This
interpretation provides a concrete and objective benchmark for
the reliability of the LC-MS/MS measurements.

These SCoPE-MS plots should be analyzed in the context of
distribution plots reporting on all levels of the LC-MS/MS
analysis so that the origin of problems can be identified and
interdependent parameters optimized. We hope that these
metrics will assist the wide adoption of low-input sample
preparation and analysis methods.

DART-ID Diagnostics

We recently developed a Bayesian framework for global
retention time (RT) alignment and for incorporating RT
estimates toward improved confidence estimates of peptide-
spectrum matches (PSMs): Data-driven Alignment of
Retention Times for Identification (DART-ID)* To visualize
the performance of DART-ID, we added a dedicated tab to
DO-MS. The DART-ID tab allows users to assess the impact
of DART-ID on their data sets through such metrics as the
number of upgraded PSMs per raw file and the residual error
from global RT alignment, that is, the difference between the
measured RT and reference RT inferred by DART-ID. This
dashboard tab also illustrates the ease with which new modules
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can be added to DO-MS as users develop new methods and
want to visualize new informative features of their data and
analysis.

B CONCLUSION

Optimal instrument parameters are context dependent and
thus should be determined systematically by data-driven
approaches for each set of samples and LC-MS/MS
configurations. DO-MS enables such optimization. Sometimes,
this data-driven approach results in counterintuitive results, as
demonstrated in Figure 1 with the increased number of
identified peptides at longer max fill times. By increasing our
MS?2 injection time, and consequently our duty cycle length,
we managed to increase the number of confidently identified
peptides in our sample. This result contrasts with the strategy
commonly employed by bulk proteomics methods, namely
seeking to increase peptide identification by increasing MS2
sampling frequency and thus decreasing the fill time for each
MS/MS.

The DO-MS dashboard is an open-source, GUI-based tool
for quickly assessing LC-MS/MS parameter optimization
strategies and sample quality in single-cell proteomics
experiments. This diagnostic platform can assist other
laboratories in adopting ultrasensitive, low-input LC-MS/MS
methods, such as SCoPE-MS, and can serve as a highly
adaptable data visualization tool for proteomics researchers.
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