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Many proteoforms—arising from alternative splicing,
post-translational modifications (PTM), or paralogous
genes—have distinct biological functions, such as his-
tone PTM proteoforms. However, their quantification by
existing bottom-up mass-spectrometry (MS) methods is
undermined by peptide-specific biases. To avoid these
biases, we developed and implemented a first-principles
model (HIquant) for quantifying proteoform stoichiome-
tries. We characterized when MS data allow inferring pro-
teoform stoichiometries by HIquant and derived an algo-
rithm for optimal inference. We applied this algorithm to
infer proteoform stoichiometries in two experimental sys-
tems that supported rigorous bench-marking: alkylated
proteoforms spiked-in at known ratios and endogenous
histone 3 PTM proteoforms quantified relative to internal
heavy standards. When compared with the benchmarks,
the proteoform stoichiometries interfered by HIquant
without using external standards had relative error of
5–15% for simple proteoforms and 20–30% for com-
plex proteoforms. A HIquant server is implemented
at: https://web.northeastern.edu/slavov/2014_HIquant/
Molecular & Cellular Proteomics 18: 162–168, 2019. DOI:
10.1074/mcp.TIR118.000947.

Alternative mRNAs splicing and post-translational modifi-
cations (PTM)1 produce multiple protein isoforms per gene,
termed proteoforms by Smith et al. (1). Furthermore, protein
isoforms can be produced by distinct but highly homologous
open reading frames, i.e. paralogous genes. Despite having
similar sequence, proteoforms and protein isoforms often
have distinct, even opposite biological functions (2, 3). For
examples: (1) some Bcl-x isoforms promote apoptosis
whereas other Bcl-x isoforms inhibit apoptosis (4); (2) the
methylation of histone 3 can cause either transcriptional ac-
tivation (lysine 4) or repression (lysine 9) depending on the
modified lysine (5); (3) pyruvate kinase isoforms have different
metabolic regulation, activities, and roles in aerobic glycolysis
(6–8); and (4) minor amino acid differences between actin

and tropomyosin isoforms alter the tropomyosin position on
actin (9).

Understanding such systems demands accurate methods
to distinguish and quantify proteoform abundances (3, 10).
However, the high sequence homology among proteoforms
makes their quantification by bottom-up LC-MS/MC very
challenging because protease digestion (which is an essential
part of high-throughput bottom-up proteomics) is likely to
produce mostly peptides that are shared by multiples proteo-
forms (11–13). One approach to overcoming the challenge of
shared peptides and distinguishing among proteoforms is to
analyze the intact proteoforms without protease digestion,
which is known as top-down proteomics (10, 14–16). Com-
bining advances in chromatographic separation of proteins
with top-down proteomics has enabled quantifying function-
ally distinct isoforms of skeletal and cardiac muscle proteins
(9, 17), combinatorial histone modifications (18, 19) and dis-
covery analysis of thousands of human proteoforms (10, 20).
Distinguishing proteoforms has been powered by efficient
fragmentation methods, such as electron capture dissociation
(ECD) (21) and electron transfer dissociation (ETD) (22). Com-
bining these methods with infrared photoactivation (23) and
with clever algorithms has made it possible to localize PTMs
and identify the sequences and modified sites even for pep-
tides with multiple covalent modifications (24, 25). Such meth-
ods allow quantifying the ratios among modifications occur-
ring on the same peptide.

Although advances in protein separation and top-down
methods are becoming increasingly powerful (10, 16, 20),
bottom-up methods remain more widely used and still afford
higher throughput (26, 27). When analyzed by bottom-up
methods, many proteoform-specific modifications occur on
distant parts of the corresponding proteins and upon prote-
ase digestion will be found on different peptides. Furthermore,
most of the peptides may be shared among proteoforms
(11–13). Here we focus on quantifying the stoichiometry
among such proteoforms from peptides quantified by bot-
tom-up LC-MS/MS across multiple samples.
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One validated approach to quantifying the stoichiometry
among such proteoforms relies on external standards (28, 29).
This method can afford high accuracy even for complex pro-
teoforms (29). However, their wider use has been limited by
expense and applied only to special cases that allow chemical
modification of cell lysates, e.g. phosphorylation (30) and
acetylation (31, 32). In the absence of external standards, the
quantification of complex proteoform stoichiometries remains
very challenging because the ratios between proteoform-spe-
cific peptides do not necessarily reflect the ratios between the
corresponding proteoforms (33); precursor ion areas corre-
sponding to the same phospho-site in the same sample can
differ over 100-fold depending on the choice of protease (34).
This discrepancy arises because a measured peptide level
(precursor ion area) depends not only on the abundance of the
corresponding protein(s) but also on extraneous factors in-
cluding protein digestion, peptide ionization efficiency, the
presence of other co-eluting peptides, and chromatographic
aberrations (34–36). These extraneous factors break the
equivalence between the abundance of a peptide and its
precursor ion area and thus make protein quantification much
more challenging than DNA quantification by sequencing.
This problem is compounded when PTM peptides have been
enriched, and thus their intensities scaled by unknown enrich-
ment-dependent factors.

EXPERIMENTAL PROCEDURES

We used two experimental approaches to derive bench-mark
estimates of proteoform stoichiometries: (1) We mixed alky-
lated proteoforms of the dynamic universal proteomics stand-
ard (UPS2) into known ratios and (2) We quantified stoichi-
ometries among histone PTMs by parallel reaction monitoring
(PRM) relative to peptide standards with known absolute
abundances. Each of these methods is described in the sub-
sections below, and the resulting bench-mark estimates of
proteoform stoichiometries were used to evaluate HIquant
inferences.

Quantifying Alkylated proteoforms of UPS2—Our first test
of HIquant on experimental data with bench-marked proteo-
forms was based on alkylated proteoforms of UPS2 that we
mixed into predetermined ratios. To achieve such mixtures,
we started by splitting a UPS standard into two equal parts,
part A and part B. Then:

● Part A was reduced with TCEP, and Cys were alkylated
with iodoacetamide.

● Part B was reduced with TCEP, and Cys were alkylated
with vinylpyridine.

The alkylated proteoforms from both part A and part B were
diluted to a total volume of 320 �l and spiked into yeast
samples according to Table I.

This range of mixing ratios, spanning an order of magni-
tude, was chosen as it includes the range of relative changes
commonly measured reliably by mass-spectrometry. The
fractional site occupancy between the proteoforms varied
within 10-fold in each direction, the range over which HIquant
is likely to give the most accurate results. As discussed below,
the ratios among proteoforms whose levels differ by many
orders of magnitude may be better inferred from the precursor
ion areas of their unique peptides.

After the spike in of UPS alkylated proteoforms, each sam-
ple was digested by trypsin overnight and labeled with the
corresponding TMT tag according to manufacturer’s protocol.
The labeled samples were mixed into a set and processed as
described previously (8). Briefly, the set-sample was injected
from an auto-sampler into the trapping column (75 �m col-
umn ID, 5 cm length, and packed with 5 �m beads with 20 nm
pores; from Michrom Bioresources, Inc.) and washed for 15
min; the sample was eluted to analytic column (Waters col-
umns with 75 �m ID, 15 cm length, and packed with HSS T3
1.8 �m beads) with a gradient from 2 to 32% of buffer B (0.1%
formic acid in ACN) over 180 min gradient and fed into LTQ
Orbitrap Elite (Thermo Fisher, San Jose, CA). The instrument
was set to run in TOP 20 MS/MS mode method with dynamic
exclusion. After MS1 scan in Orbitrap with 60K resolving
power, each ion was submitted to an HCD MS/MS with 15K or
30K resolving power and to CID MS/MS scan subsequently.
All quantification data were derived from HCD spectra.

In the particular case of UPS2, trypsin digestion resulted in
enough peptides to constrain the HIquant model (Fig. 1) and
to support accurate inference (Fig. 2B, 2C). More complex
proteoforms may require more peptides than those quantified
from a trypsin digestion. In such cases, to better constrain the
inference, one might increase the number of peptides used by
HIquant by compiling peptides quantified from several diges-
tions, each of which using a different protease (34, 36). Be-
cause HIquant uses only the relative quantification and is
insensitive to systematic biases, including proteoform-spe-
cific digestion efficiency, it can easily accommodate peptides
quantified from digestions with different proteases or from
different enrichment methods.

1 The abbreviations used are: PTM, post-translational modifica-
tions; PSM, peptide spectrum matches; FDR, false discovery rate;
PRM, parallel reaction monitoring.

TABLE I

TMT-126 TMT-127 TMT-128 TMT-129 TMT-130 TMT-131

Part A (iodoacetamide) 10 10 50 50 100 80
Part B (vinylpyridine) 50 100 40 50 10 50
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Analysis of Mass-Spec Spectra—Mass/charge spectra
were analyzed by MaxQuant (37) (version 1.4.1.2) or
SEQUEST HT run via the Proteome Discoverer (64 bit version
1.4.0.288, Thermo). All searches were run on a Windows
server 2008 64 bit operating system with 64 CPU blades and
256 GB of RAM with the following general parameters. Parent
ion mass tolerance was set to 20 ppm, mass tolerance for
MS/MS ions was set to 0.02 Da for HCD and to 0.6 Da for CID
spectra. For all searches, minimal peptide length was speci-
fied as 6 amino acids and maximal peptide length as 50
amino acids. The peptide charge state was limited to �7 for
searches with MaxQuant. Searches were performed
against the yeast uniprot database downloaded from www.
yeastgenome.org in October 2014 containing 6,750 entries,
the fasta sequences of the UPS standard, and common con-
taminants. Searches had trypsin specificity, allowing 2 missed
cleavages. Asn and Gln deamidation, Cys alkylation by either
iodoacetamide or vinylpyridine, and Met oxidation were in-
cluded as variable modifications in the search parameters.
There were no fixed modifications.

The search results from all search engines were filtered at
1% false discovery rate (FDR) on both protein and on peptide
levels using the Percolator (Version 2.05 Build Date May 6
2013). The results exported for further analysis included all
peptide spectrum matches (PSM) that were assigned to one
or more proteins and passed the statistical significance filter.
These results were outputted in the “evidence.txt” file for
MaxQuant and in a peptide-level-results text file for Proteome
Discoverer.

PRM of Histone PTMs Relative to Heavy Peptide Stan-
dards—To evaluate HIquant inferences, we also used PTM
stoichiometries estimated from a parallel reaction monitoring

(PRM) assay quantifying each peptide relative to an internal
heavy standard. Creech et al. have published a detailed de-
scription of the assay (29), and here we will only briefly sum-
marize it. Drug-treated cells were collected by centrifugation.
After cell lysis, histones were extracted with sulfuric acid and
were precipitated with trichloroacetic acid. Samples com-
prised of 10 �g, a 5-fold reduction compared with Creech et
al. (29), were propionylated, desalted, and digested overnight
with trypsin. After a second round of propionylation, the sam-
ples were desalted using C18 Sep-Pak Cartridge (Waters). A
mix of isotopically labeled synthetic peptides was spiked-in to
each sample prior to MS analysis. Peptides were separated
on a C18 column (EASY-nLC 1000, Thermo Scientific) and
analyzed by MS in a PRM mode (Q Exactive-plus, Thermo
Scientific) as described previously (29). Detailed SOPs for
P100 and GCP assays, including synthetic peptide master
mixture formulation, can be found at https://panoramaweb.
org/labkey/wiki/LINCS/Overview%20Information/page.view?
name�sops.

Inference Model for HIquant—To infer proteoform stoichi-
ometry, we use a simple model that is illustrated in Fig. 1A
with proteoforms of histone H3 and in supplemental Fig. S1
with paralogous ribosomal proteins and phosphoproteoforms
of pyruvate dehydrogenase. HIquant explicitly models pep-
tide levels measured across conditions as a superposition of
the levels of the proteins from which the peptides originate,
Fig. 1A. In this model, shared peptides serve as indispensable
internal standards; they couple the equations for different
peptides and thus make possible estimating stoichiometries
between homologous proteins and proteoforms. The simple
example in Fig. 1A generalizes to any number of proteins/
proteoforms (M) and any number of conditions greater than 1

FIG. 1. Model for inferring stoichiometries among proteoforms and paralogous proteins independently from peptide-specific biases.
A, One shared (X2) and three unique (X1, X3, and X4) peptides of H3 proteoforms illustrate a very simple case of HIquant. HIquant models the
peptide levels measured across conditions (x) as a supposition of the protein levels (p), scaled by unknown peptide-specific biases/nuisances
(z). These coupled equations can be written in a matrix form whose solution infers the methylation stoichiometry independently from the
nuisances (z). B, The general form of the model for K proteoforms (or homologous proteins) with M peptides quantified across N conditions
can be formulated and solved. In many, albeit not all, cases an optimal and unique solution can be found, even in the absence of unique
peptides; see supplemental Fig. S1 and Supplemental Information.
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(N � 1) as the system in Fig. 1B shows. HIquant solves this
system and infers the protein levels (P) independently from the
extraneous noise (Z; coming from protein-digestion, peptide-
ionization differences, sample loss during enrichment, and
even coisolation interference); Z is also inferred as part of the
solution and discarded. A related superposition model has
been used before with peptides quantified at one condition
(13). However, for a single condition, the model cannot quan-
tify the proteins independently from the nuisance Z because
all problems described by system 1 in Fig. 1 are under-
determined, i.e. have infinite number of solutions (Proof 1;
Supplemental Information). Thus, for a single condition, the
model cannot take advantage of the robust corresponding-
ion pairs, i.e. ratios between ions with the same chemical
composition. In contrast, HIquant infers ratios across proteins
and their PTMs solely from the corresponding-ion ratios. This
is possible because when N � 1, the system in Fig. 1B often

has a unique solution up to a single scaling constant, even
when all peptides are shared, e.g. the problem defined by the
design matrix in supplemental Fig. S1C. We characterize the
conditions under which HIquant has a unique solution for
the abundances of individual proteoforms and derive algo-
rithms that use convex-optimization to find the optimal solu-
tion given the data; see Malioutov and Slavov (38) and Sup-
plemental Information.

VALIDATING INFERENCE OF PROTEOFORM STOICHIOMETRY

Our model (Fig. 1B) aims to make proteoform quantification
insensitive to many systematic biases. For example, incom-
plete cleavage of a peptide, e.g. only 5% of the peptide is
released during enzyme digestion, is fully absorbed into the
corresponding nuisance and does not affect inferred protein
levels if the cleavage is 5% for all conditions/samples. Anal-
ogously, if coisolation interference compresses the fold-

FIG. 2. HIquant accurately quantifies ratios across alkylated proteoforms of a spiked-in standard. A, Schematic diagram of a validation
experiment. We prepared a gold standard of proteoforms from the dynamic universal proteomics standard (UPS2) whose cysteines were
covalently modified either with iodoacetamide or with vinylpyridine. Upon digestion, these modified UPS proteins generate many shared
peptides (peptides not containing cysteine) and a few unique peptides (peptides containing cysteine). The modified UPS2 proteins were mixed
with one another at known ratios (n), mixed with yeast lysate, digested and quantified by MS. The proteoform ratios that HIquant inferred from
the MS data (n̂) were compared with the mixing ratios. B, The ratios across the alkylated isoforms of UPS2 inferred by HIquant (n̂, y axis)
accurately reflect the mixing ratios (n, x axis). C, The mixing and inferred ratios in panel B span 2-orders of magnitude, which is much larger
than the dynamic range of relative error. To zoom in on the relative errors, we plotted a distribution of log2�n/n̂� for 1, 500 HIquant problems
generated by sampling with replacement peptides from all UPS2 proteins. For HIquant, this distribution indicates small error, with median error
below 11%. However the ratios estimated just from the precursor intensities of the unique peptides for each proteoform show significantly
higher relative error, mostly likely because of peptide-specific variability in digestion and ionization.
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changes of a peptide, the systematic component of the
compression is fully absorbed by the nuisances. Unlike
systematic biases, random noise in the data is not absorbed
by the nuisances; it can degrade the quality of the inference.
To assess the reliability of the inferred proteoform abun-
dances, HIquant carefully evaluates the inference and as-
signs confidence levels. The evaluation uses inference fea-
tures, such as fraction of explained variance, eigenvalue
spectrum spacing and noise sensitivity; see Supplemental
Information.

We sought to experimentally evaluate HIquant’s ability to
infer the proteoform stoichiometry in samples for which pro-
teoform stoichiometries are accurately determined by other
methods. The first method included creating and mixing al-
kylated proteoforms. The second method included quantify-
ing histone H3 proteoforms relative to heavy peptide stand-
ards with known abundances.

Validation Based on Spiked-in Alkylated Proteoforms—We
aimed to create proteoform mixtures with known stoichiom-
etries so that they can be used to assess the accuracy of
stoichiometries inferred by HIquant. To this end, the dynamic
universal proteomics standard (UPS2) was split into two equal
parts, A and B. In part A, cysteines were covalently modified
with iodoacetamide, and in part B with vinylpyridine as de-
scribed in the methods and shown in Fig. 2A. We mixed part
A and B in predefined ratios (n) and spiked each mixing ratio
into an yeast sample. All samples were labeled with TMT, and
the relative peptide levels quantified from the reporter ions at
the MS2 level.

These alkylated UPS proteoforms have mostly shared pep-
tides (peptides not containing cysteine) and only one or a few
unique peptides per proteoform (peptides containing cys-
teine). HIquant modeled the relative levels of these peptides
as shown in Fig. 1 and solved the model to infer the stoichi-
ometries of the alkylated proteoforms (n̂), which should cor-
respond to the mixing ratios. Indeed, we find that the actual
mixing ratios (n) for all quantified proteoforms correlate
strongly to the inferred ratios (n̂) as shown in Fig. 2B. To
examine the accuracy of the inferred ratios n̂ more closely, we
sought to generate a distribution of errors between the in-
ferred and the expected mixing ratios (n̂/n) for many
HIquant problems, more than the number of UPS2 proteo-
forms. To do so, we took advantage of the fact that the A/B
ratios of the alkylated proteoforms for different UPS2 proteins
should be the same because the proteins were mixed simul-
taneously and therefore in equal proportions. Thus, we cre-
ated 1500 HIquant problems by sampling with replacement
shared peptides (not containing cysteine) and unique pep-
tides (containing cysteine), and then inferred the n̂ ratios be-
tween the iodoacetamide and vinylpyridine modified proteo-
forms, one ratios for each TMT channel and 6 per HIquant
problem. The corresponding distribution of relative errors is
shown in Fig. 2C along with the errors for ratios estimated
from the abundances of the precursor ions. The median error

is below 11% for ratios inferred by HIquant and a substantially
larger error for the ratios between precursor ion areas of
unique peptides (Fig. 2C).

Validation Based on Histone 3 Proteoforms Quantified by
PRM—Next, we sought to evaluate the ability of HIquant to
infer stoichiometries of more complex PTM proteoforms,
those of histone H3. We rigorously quantified endogenous
proteoform stoichiometries by a previously developed assay
based on external standards (MasterMix) with known concen-
trations (29). For the test, we used peptides quantified by
parallel reaction monitoring (PRM) across 7 drug perturba-
tions. Fractional site occupancies were estimated based on
the external standards as described before by Creech et al.
(29). Independently, the same stoichiometries were inferred
by HIquant only from the relative levels of the indigenous
peptides, without using the MasterMix concentrations. The
comparison of these estimates indicates good agreement
(Fig. 3), supporting the ability of HIquant to infer fractional site
occupancy even when the same site may be modified by
different PTMs. The estimates from the external standards
and from HIquant are very close but also show some system-
atic deviations. Those deviations may arise because of incom-
plete protein digestion that is hard to control for with peptide
standards, measurement noise corrupting the solution in-
ferred by HIquant or proteforms not explicitly included in the
model. The abundances of some proteoforms with quanti-
fied peptides is over 1000-fold lower than the abundance of
the main proteoforms. They and their corresponding pep-
tides were omitted from the HIquant inference because
their quantification requires unrealistically high accuracy of
relative quantification; see Supplemental Information and
Discussion.

DISCUSSION

The idea of using ratios between chemically identical ions is
a cornerstone of quantitative proteomics (28, 39). It has been
used for two decades in the context of relative quantification
of proteins based on unique peptides (40) and even applied to
the special case of inferring phosphorylation site occupancy
(11, 33). Our work expands and generalizes this idea to all
peptides, to stoichiometries of complex proteoforms, and to
unlimited number of conditions. Crucially, HIquant allows ac-
curate, efficient, and numerically stable inference resulting in
reliability estimates.

HIquant requires and depends upon accurate relative quan-
tification. This limitation is largely and increasingly mitigated
by technological developments allowing accurate estimates
of corresponding ion ratios. Such improvements include in-
strumentation advances (41, 42), interference free tandem
mass tags (43), and enhanced peptide quantification from
mass-spectra (27) However, these technological develop-
ments on their own do not allow accurate estimates of PTM
site occupancy from bottom-up LC-MS/MS (34). HIquant’s
dependence on the accuracy of relative quantification in-
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creases with increasing difference in the abundance of pro-
teoforms. If the levels of two proteins differ by more than
3–6 orders of magnitude, this difference is likely better
inferred from the precursor ion areas of the unique peptides.
The associated noise (because of variability in protein
digestion and ionization) is generally below 100-fold (36)
and thus smaller than the signal. HIquant’s utility is partic-
ularly relevant when proteins and proteoforms have compa-
rable abundances (within 10–100 fold difference) but dis-
tinct functions (44, 45) and thus accurate quantification is
essential for quantifying relatively small differences in abun-
dance. Quantifying such proteoforms is an exciting frontier
essential for understanding post-transcriptional regulation
(46, 47) and defining cell-types from single cell proteomes
(48).

The general form of HIquant described in Fig. 1C indicates
that HIquant is not limited to proteoforms, even broadly de-
fined. Rather, HIquant can be applied to any set of proteins
sharing a peptide. Here we emphasize the application to
proteoforms because existing bottom-up methods are better
suited for quantifying the stoichiometry between proteins with
low homology that generate many unique peptides. For pro-
teins with multiple unique peptides, some of the peptide-
specific bias (from variation in protein-digestion and peptide-
ionization efficiency) is likely to be averaged out and reduced.
However, this bias is a more serious problem for proteoforms
with only one or only a few unique peptides (34). For such
proteoforms, HIquant can allow estimating stoichiometries
accurately using only ratios between chemically identical
ions.

Supplemental Information—Supplemental information in-
cludes Extended Experimental Procedures, Mathematical
Proofs, and Supplemental Figs. can be found in the Supple-

mental Information. The supplemental website for interactive
data analysis can be found at: https://web.northeastern.edu/
slavov/2014_HIquant/ Python code implementing HIquant is
available at: https://github.com/nslavov/HIquant.
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