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ABSTRACT

Molecular dynamics simulations are used to predict the ther-
mal resistance of solid-solid interfaces in crystalline superlat-
tices using a new Green-Kubo formula. The materials on both
sides of the interfaces studied are modeled with the Lennard-
Jones potential and are only differentiated by their masses. To
obtain the interface thermal resistance, a correlation length in
the bulk materials is first obtained, which approaches a system-
size independent value for larger systems. The interface thermal
resistance is found to initially increase as the layer length is in-
creased, and then to decrease as the phonon transport shifts from
a regime dominated by ballistic transport to one dominated by
diffusive transport.

NOMENCLATURE

A area

E energy

F force vector

k thermal conductivity
kg Boltzmann constant
L length

m  mass

r particle position vector, particle separation vector
q planar energy flux

R thermal resistance
R,, mass ratio
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S, S heat current, heat current vector
t time

T temperature

v particle velocity vector

V  volume

X position

Greek

A length

A correlation length

¢ potential energy

@ spatial correlation function

Subscripts

A material on one side of interface
A|B A-B interface

B material on other side of interface
i summation index, particle label

Jj summation index, particle label

K Kapitza

[ direction (x, y, or z)

SL superlattice

x composition fraction

Superscripts
o time average value
oo large system limit
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INTRODUCTION

A superlattice is a periodic composite material composed of
layers of metals, semiconductors, and/or insulators. Superlat-
tices built from group IV semiconductors (e.g., Si/Si,Ge|_,) and
Group III-V semiconductors (e.g., AlAs/GaAs) have received
considerable attention due to their relevance to the electronics in-
dustry. By appropriate choice of the layer compositions (includ-
ing doping) and thicknesses, it is possible to separately control
the transport of electrons and phonons in a superlattice [1]. While
the electron transport has been considered extensively, attention
has only recently turned to the thermal transport characteristics.
The potential anisotropy of the superlattice thermal conductivity
tensor may be advantageous in systems where the careful con-
trol of heat transfer is needed, and superlattices with low thermal
conductivity are of interest in thermoelectric energy conversion
applications [2].

Thermal transport modeling in superlattices has typically
focused on the prediction of the effective thermal conductiv-
ity [3—12]. Here, we report on a molecular dynamics (MD) study
aimed at predicting the thermal resistance of the interfaces in a
model superlattice. The interface resistance plays an important
role in the thermal behavior of many of the new nanocomposites
being developed. Prediction of its magnitude is challenging, es-
pecially when system interfaces are close together, but is crucial
for the development of superlattice design techniques.

The nature of phonon transport in a superlattice is first re-
viewed, followed by a description of modeling methods avail-
able. We then propose a method to predict the interface thermal
resistance using a Green-Kubo formula, and examine the effects
of changing the period length in a superlattice modeled with the
Lennard-Jones (LJ) potential.

PHONON TRANSPORT IN SUPERLATTICES

Consider a superlattice composed of layers of equal thick-
ness of materials A and B with a period length L (i.e., Ly =
L = L/2), as shown in Fig 1. From a continuum standpoint, the
thermal resistance normal to the layers of one period of such a
structure will be

L L
Ry =2+ -2 1 2Ryp, 1)
ka kg

where k; is the bulk thermal conductivity of material i (i =A,B)
and R is the thermal resistance of the A|B interface. Note
that Rojp is equal to Rpjs. As the period length increases, the
contribution of R to Rg; will decrease, and beyond a certain
size, will be negligible. When the interfaces are far enough apart
to be considered isolated, the interface thermal resistance can
also be called the Kapitza resistance, Rg a|B-

To move from the continuum description of Eq. (1) to the
nanoscale superlattices currently being fabricated, we must con-
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Figure 1. MODEL SUPERLATTICE WITH PERIOD L.

sider the nature of the phonon transport as L decreases. When
the superlattice period is large (i.e., greater than the bulk phonon
mean free path of the constituent species), phonons that leave
one interface will scatter with other phonons before reaching the
next interface. This is diffusive transport, and one can consider
the interfaces as being isolated, with most of the phonon trans-
port occurring in a bulk-like manner. Additionally, all phonons
incident on the interface are scattered. This behavior is known as
incoherent phonon transport, in that the vibrational modes in the
different layers are distinct. Isolated interfaces are the type most
generally modeled [13-19].

As the period length decreases below the bulk phonon mean
free path, some phonons leaving an interface may travel through
the entire layer without scattering with other phonons, and be
scattered at the next interface. This is ballistic phonon transport,
and while the phonons are still incoherent across the interface,
the assumption of bulk-like behavior in the layers becomes less
valid [i.e., the use of ks and kg in Eq. (1) becomes questionable].
The interfaces are no longer isolated. As the layer thickness gets
smaller, the phonon transport will become more ballistic.

When the layer thickness gets smaller still, another transi-
tion takes place. At some point, the layers no longer exhibit any
behavior typical of their bulk equivalents. The phonon disper-
sion is now better represented by the superlattice unit cell than
by distinct relations in each layer. The phonons are now coher-
ent, in that they do not see the interface as a scattering location,
but as part of a new “bulk” material. The phonon transport in
this regime is diffusive, and the concept of the interface resis-
tance is no longer applicable. The majority of lattice-dynamics
based superlattice thermal conductivity prediction studies have
considered such systems [4,5,9].

In this investigation, we are concerned with the second of
these three regimes, where the phonons are incoherent across the
interfaces and the transport in the layers has both diffusive and
ballistic components.

INTERFACE THERMAL RESISTANCE PREDICTION
When an energy flux g passes through an interface with area
A between materials A and B, a temperature drop AT results. The
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interface thermal resistance is defined from

AT

q
1=, 2)
A Rap

which is similar in form to the Fourier law of conduction.

The simplest models of incoherent interfacial phonon trans-
port are the acoustic mismatch model (AMM) and the diffusive
mismatch model (DMM) [20]. In the AMM, the transmission of
energy across the interface (which is assumed to be perfect) is de-
pendent on the bulk properties of the two materials. There is no
scattering at the interface, just transmission and reflection of en-
ergy. The AMM has been found to give good predictions at low
temperatures (< 30 K) [21], where the phonon transport is dom-
inated by long-wavelength modes. In the DMM, all phonons are
assumed to scatter diffusely at the interface. At a solid-solid in-
terface, diffuse scattering may account for up to 10% of the total
scattering [20]. The distribution of energy between the two sides
of the interface after a scattering event is based on the phonon
density of states and phonon group velocities of the bulk materi-
als. As both the AMM and DMM rely on bulk material proper-
ties, they are only strictly valid for isolated interfaces.

Young and Maris [13] developed a more refined approach to
model the phonon transport at the interface between two semi-
infinite harmonic face-centered cubic (fcc) lattices. Using de-
tailed information about the phonon dispersion obtained from
lattice dynamics calculations, specifics about the reflected and
transmitted phonon modes can be found and used to predict the
interface thermal resistance. For interfaces of materials whose
Debye temperatures are within a factor of five, the predictions
are in reasonable agreement with experiments [14]. Zhao and
Freund [19] extended this method to model phonon transport at
the interface between materials with a diamond structure, allow-
ing for examination of acoustic and optional phonons. While
this method can provide very detailed information, it is limited
by the harmonic nature of the lattice dynamics approach (which
may lead to errors as the temperature of the system is increased)
and the need to model isolated interfaces.

Molecular dynamics simulations can also be used to investi-
gate interfacial thermal transport. In a MD simulation, the posi-
tions and momenta of a system of classical particles are predicted
using Newton’s second law and an appropriate interatomic po-
tential. One of the advantages of MD simulations is that no a pri-
ori assumptions about the nature of the thermal transport need to
be made. The most commonly used method to predict the inter-
face thermal resistance using MD simulations is called the direct
method [6, 10, 15,17, 18,22,23]. A simulation cell long in one
dimension is used, and a known heat flux is established between
hot and cold reservoirs with controlled temperatures. The inter-
face is placed between the hot and cold reservoirs, and the result-
ing temperature drop across it and the known heat flux are used to

find the interface thermal resistance using Eq. (2). This approach
has been used to study grain boundaries in silicon [15, 18] and
diamond [23], and for interfaces in LJ systems [6, 10,22]. Long
simulation cells are typically needed to get system-size indepen-
dent results.

An alternative method to finding the interface thermal re-
sistance in an MD simulation is to use a Green-Kubo approach,
where information regarding transport in a system is obtained
from equilibrium simulations [24]. In the next section, we mod-
ify a GK approach for interfacial transport proposed by Puech
et al. [25], and apply it to a simple mass-mismatch LJ interface.
With the GK method we are able to investigate layer-thickness
effects, and gain further insight into the nature of the interfacial
transport.

PLANAR FLUX GREEN-KUBO FORMULA FOR THE IN-
TERFACE THERMAL RESISTANCE

Puech er al. [25] suggest that the thermal resistance of the
interface between materials A and B can be predicted using the
Green-Kubo formula

1 1 °

Fos = At Jy a0, @
where kg is the Boltzmann constant and ¢(¢) is the flux of energy
(the planar flux) though the surface at time 7 (i.e., the power). The
integrand, {g(¢)g(0)), is the planar flux autocorrelation function
(PFACEF).

Barrat and Chiaruttini [26] applied this formulation to pre-
dict the thermal resistance of a LJ solid-liquid interface using

MD simulations. They define the planar flux between two phases
A and B as

q(t)=Y ) Fi-v, “4)

icA jeB

where the first summation is over all atoms in phase A, the sec-
ond summation is over all atoms in phase B, F;; is the force
exerted by atom j on atom i, and v; is the velocity of atom i.
In practice, only atoms within the cutoff radius of the interface
need to be considered in the summations. Good agreement is
found between the prediction of Eq. (3) and that from a direct
method calculation. Shenogin et al. [27] used this formulation to
investigate the thermal relaxation of fullerenes in liquid octane.
We applied Eq. (3) to a LJ system with an interface where
the two materials only differ by their masses (the details are
discussed in the next section). An interface thermal resistance
one order of magnitude larger than that predicted by Stevens et
al. [22] (who used the direct method for a similar system) was
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found. We reproduced the Stevens et al result with our own di-
rect method code (not reported here).

Based on these findings, we propose that a modification to
the Puech Green-Kubo formula, Eq. (3), is required. We believe
that the error in the original derivation comes when it is assumed
that the temperature of material B is spatially uniform, giving it
an infinite thermal conductivity (see page 1608 of Ref. [26]). In
reality, there will be fluctuations in the B phase temperature due
to its finite thermal conductivity and fluctuations in the planar
energy flux. The same is true for the A phase. This fact sug-
gests that the regions near the interface play a critical role in the
interfacial resistance and may be contributing to the predicted
resistance from Eq. (3).

To that end, we propose the following new GK formula for
the interface thermal resistance:

1 1
Ra+ (ky'Aa+hg'Ag) /2 AkpT?

| drtava©), ©

where A is a correlation length in perfect bulk A, and similar
for Ag. The right hand side of (5) is the same as in Eq. (3).
The denominator of the left hand side of Eq. (5) is the series
summation of the thermal resistances near and across the A|B
interface. Note that Eq. (5) will give a smaller R than Eq. (3),
as we require based on our preliminary findings.

The thermal conductivity of perfect A in the /th direction
(I = x,y,z) in Eq. (5) can be predicted from the Green-Kubo for-
mula [24]

1

hyg = —
PA T VieT?

/0 " (S1(1)51(0)) adt, ©)

where V is the system volume, S;(¢) is the heat current in direc-
tion /, and () indicates ensemble averaging in perfect A. The
heat current vector can be given by [28]

d 1
S — EZE,TE) =3 Y Fij- (vitvj)rg, )
7

i<j

where E; and r; are the total energy and position vector of particle
i, rjj is r; —r;, and the superscript o indicates a time averaged
value. The last equality only applies for a pair potential. For the
remainder of this paper, we will identify the heat current normal
to the interface by S(z).

We propose to evaluate the correlation length for material A
as

| s0s0)ade

(
7\'A = 0 o 5
L[ taa©)uds

®)

where L = V /A, the length of the simulation cell of perfect A
studied. To justify Eq. (8), first define a localized planar energy
flux ¢(x,7) such that

S(1) = /0 " g(n)dx. ©)

The planar flux given by Eq. (4) does not satisfy this relation [i.e.,
it cannot predict Eq. (7)], in that it does not take into account the
distance separating the pairs of atoms. Instead, we propose a
localized planar flux

gy = ¥ I gy (10)
i<j
x7 +x5 A A x{+x
H(-———L—-x+Z|H ———
( 2 x+2> (Hz 2 )

A )

where H is the Heaviside step function, and A is a distance cho-
sen so that the center of all bonds considered in the sum falls in
the range (x —A/2,x+A/2). This planar flux produces the cor-
rect system heat current S(¢). We compared the predictions of
Egs. (4) and (10) in a monatomic system and found very good
agreement when A = 1. This result makes sense, as using A =1
will give the interactions between the layers of atoms on either
side of the interface (which will dominate the flow of energy) the
same weight they have in Eq. (4). With A = 1, the integral of the
autocorrelation of the two expressions for the planar flux gives
the same converged value [as required in Eq. (3)]. The integral
of the autocorrelation of Eq. (10) has an oscillatory component,
making its specification more difficult. For this reason, in subse-
quent analysis we use Eq. (4) for the planar flux, knowing that it
will give the same result as Eq. (10).

Substituting Eq. (9) for the heat current into the integral in
the GK thermal conductivity formula, Eq. (6), leads to

| (s05(0)) ac (an
= /Om</0Lq(x,t)dx X /OLq(x/,O)dx'>Adt
= /Ode/Ode/ /Ooo<q(x,t)q(x/,0)>Adt
_r / HaN /0 " (9(0,1)q(x,0)) adlt.

vy

The integrand in the last line implies a possible spatial correlation
between the planar flux at positions separated by a distance x. To
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take such spatial correlations into account, we define

. || (a.0qx.0)ac

| ta0.0)q0,0)aar

) 12)

where ®(x) is even, periodic in x with period L (to account for the
periodic boundary conditions in the MD system), and ®(0) = 1
(i.e., the planar flux at one location is perfectly correlated with
itself). Then,

| ()50t (13)

) /0 " (4(0,1)q(0,0))adr / 2 (o),

-L2

and we interpret f . /2 ®(x)dx as the correlation length, A, in-

dicating how far spatial correlations in g(x,) persist. In a bulk
system, the quantity (g(x,#)q(x,0))s will be independent of x.

MOLECULAR DYNAMICS SIMULATIONS

In the following, all reported quantities are dimensionless.
We consider systems described by the LJ potential, where the
atomic interactions are modeled using the interatomic potential

1 1
¢ij(”ij):4<r12—6>7 (14)

ij  Tij
where ¢;; is the potential energy between atoms i and j. The LJ
potential has been extensively used to model thermal transport in
model systems as a means to developing techniques that can later
be applied to more realistic systems [6, 10, 12,26,29-32].

All simulations are run at a temperature of 0.3307 and at
zero pressure. The equilibrium positions of the atoms correspond
to a fcc crystal with lattice constant of 1.5793 [31]. As shown in
Fig. 2, the simulation is a rectangular solid. There are four unit
cells in each of the y- and z-directions (parallel to the interface),
and the number of unit cells in the x-direction is varied. The sys-
tem contains two layers of equal length in the x-direction, one
of material A and the other of material B. All data collected are
from simulations run in the NV E ensemble (constant mass, vol-
ume, and energy). The time step is 0.002, a potential cutoff of
2.5 is applied, and periodic boundary conditions are imposed in
all directions. Further details on the MD methods can be found
in Refs. [30] and [31].

Two types of simulation were performed. First, we consid-
ered monatomic (A=B) systems with ma = mp =1 to find the

‘\l_m

A x B
< L[aygr »>< Llaver —>
ccceccc0000cec0 0000000000000
ceccccce0000000000000000000000
ccccco0cc00c0000cP0000000000000
cccoccocc000000000000000000000
ccccc0c0000000000000000000000
ceccoccce0000000000000000000000
ccccco0coc00c0000cP0000000000000
cccocc0c0000000000000000000000
< L >

Figure 2. MOLECULAR DYNAMICS SIMULATION CELL. FOR
THE CORRELATION LENGTH SIMULATIONS ma = mg = 1. FOR
THE INTERFACE THERMAL RESISTANCE SIMULATIONS, m =
1 AND mp = 2.

correlation length needed in Eq. (5). The PFACF was calculated
at two imaginary interfaces that divided the simulation cell into
two equal parts. Total system lengths between 15.79 and 110.55
were considered (corresponding to simulation cells containing
640 to 4480 atoms).

Second, MD simulations of interfacial systems were per-
formed to predict the interface thermal resistance. The mate-
rials A and B only differ by their masses. As a result of the
periodic boundary conditions, the system contains two identical
interfaces. The two materials have the same LJ length and en-
ergy scales so that the zero-pressure cell size for the monatomic
system can be used. We consider the effects of changing the
layer thickness between 6.32 and 55.28 for a mass ratio, R, of
mp / ma = 2.

For each system studied, twenty independent simulations
were run from random initial conditions to ensure a proper sam-
pling of the system’s phase space. In each independent simu-
lation, data were collected over one million time steps. Auto-
correlations [as required in Eqs. (3) and (6)] are calculated over
50,000 time steps with a new time origin every five time steps.

CORRELATION LENGTH PREDICTION

To find the correlation length both the numerator and de-
nominator of Eq. (8) must be specified. The numerator is related
to the thermal conductivity of the system, and the denominator to
the total thermal resistance associated with the interface region.
We determine the correlation length for systems with 10, 20, 30,
40, 50, 60, and 70 unit cells in the x-direction. As species A and
B are only differentiated by their mass, Ax and Ap are equal.

Thermal Conductivity

The numerator of Eq. (8), [;"(S(r)S(0))ad! is related to the
thermal conductivity of material A through Eq. (6). The ther-
mal conductivity for simulation cells long in x-direction and with
four unit cells in the y- and z directions is shown in Fig. 3. To
specify the thermal conductivity, the integral of the heat current
autocorrelation function is fit with the sum of two decaying ex-
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Figure 3. PERFECT A THERMAL CONDUCTIVITY PLOTTED AS

FUNCTION OF SYSTEM LENGTH. THE SYSTEM SIZE, IN UNIT

CELLS, IS INDICATED FOR EACH POINT.

ponentials [30]. While the 4 x 4 x 4 value has previously been
shown to correspond to the bulk value for cubic systems [31], the
non-cubic simulation cell leads to a higher thermal conductivity,
saturating by the 4 x 4 x 10 simulation cell. The higher ther-
mal conductivity results from long wavelength phonon modes in
the x-direction that have fewer scattering options that they would
have in a cubic system. Averaging the thermal conductivity for
the seven largest systems shown in Fig. 3, we get k4x4x = 29.4,
the value we will use for systems ten unit cells and longer. In
previous investigations, we have assigned an uncertainty of 5%
to GK thermal conductivity predictions. The thermal conductiv-
ities of the seven long systems are all within 5% of k4 x4 xc-

Total Thermal Resistance
Define the total resistance, R;,, as that predicted by the
Puech GK formula:

1
Rior  Skp T2

| taao)ar (15)

This quantity is shown in Fig. 4 for an interface in the monatomic
system. The integral of the PFACF is obtained directly by aver-
aging the last 10,000 time steps of the autocorrelation data. The
total resistance increases with the system size, as correlations be-
tween the interface and itself (through periodic boundary condi-
tions) diminish. In theory, the resistance should saturate for large
systems. This point is discussed in the next section.

Correlation Length

The correlation length is plotted in Fig. 5. For small systems,
the correlation length closely follows the system size, an indica-
tion of ballistic phonon transport. As the system size gets bigger,

2.5
[ ] [ ]
4x4x60 4x4x70
2.0
n
4x4x50
4 4. 40
K n x4x:
N L5 4x4x30
]
<4
1ot .
4x4x20
K n
0.5 4x4x10 A
<« L—>
0 . . . . .

0 20 40 60 80 100 120
L
Figure 4. TOTAL THERMAL RESISTANCE NEAR AND ACROSS
AN INTERFACE IN THE MONATOMIC SYSTEM PREDICTED BY
Eq. (15). THE SYSTEM SIZE, IN UNIT CELLS, IS INDICATED FOR
EACH POINT.

120

1001 T

80 ]
O

< 60

40} .

20
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«— L —>
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Figure 5. CORRELATION LENGTH PREDICTED FROM Eq. (8)
PLOTTED VS. SYSTEM LENGTH.

the correlation length deviates from the system size. Comparing
Egs. (8) and (13), we have

computed L/2
Ay = / D(x)dx, (16)
—L/2
and, in the large system limit,
A — / ®(x)dx. a7
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The correlation lengths predicted from the MD simulations sug-
gest taking ®(x) to have a Gaussian shape:

2
®(x) = exp (%) , (18)
A

where A% is the large system (i.e., isolated interface) correla-
tion length. Then, using Eq. (16), we can predict the correlation
length from

n'/2L
Aa =Ayerf | —— |. (19)
AT A ( 2%

We obtain A} by fitting Eq. (19) to the MD data, and obtain a
value of 72.76. The resulting curve is shown in Fig. 5.

INTERFACE THERMAL RESISTANCE

In this section, we predict the thermal resistance of inter-
faces in the R, = 2 systems, shown in Fig. 2. To find the inter-
face thermal resistance, the perfect A (or B) quantity needed is
A /ka, which, from Egs. (6) and (8) reduces to

T2
}LA _ wL (20)

“ [ laao)ade

The layered systems studied have a maximum thickness of 55.28.
In Fig. 6, the Ry, values for these systems, and the Ry values
calculated from the new GK formula are plotted as a function of
the layer thickness. Also shown in the plot is the value of the
interface thermal resistance predicted by Stevens et al. [22] us-
ing the direct method. The interface resistance (R ) initially
increases, then starts to decrease, and is still decreasing for the
largest system size considered. With the value of A% from the
previous section, and taking a saturated R;,, value of 3.2, an inter-
face resistance of 0.221 is predicted for an infinite system, within
10% of the Stevens et al. value of 0.248, found using the di-
rect method for a system with 20 unit cells in each layer (a layer
thickness of about 32). In thermal conductivity predictions, size
effects in GK and direct method predictions are known to mani-
fest in different ways [33], which seems to be the case here

DISCUSSION AND SUMMARY

We have proposed a new GK formula to predict the thermal
resistance of an interface, and applied it to a model LJ solid-
solid interface where the two species differ only by their masses.

3.5
sof LA [° s om0
L L R
| layer layer o tot
2.5 n o . R
20}t - - RA‘B(Ref. [22]) |
= 1.5} " u ) ]
. [ ]
[ ]
1.0} =
0.5
 _ _m

0 . . . . .
0 10 20 30 40 50 60
L

Figure 6.  THERMAL RESISTANCES IN THE LAYERED STRUC-
TURE.

layer

By varying the length of the layers, signs of both ballistic and
diffusive phonon transport are evident. In further studies, we will
consider systems with more than one layer of materials A and B,
to truly simulate a superlattice.

In considering Eq. (5), we can see why Barrat and Chiarut-
tini [26] found good agreement between the Puech GK formula,
Eq. (3), and a direct method prediction. First, the correlation
length in a liquid will be small, reducing the resistance associated
with the liquid side. Second, the thermal resistance of a liquid-
solid interface will be greater than that of a solid-solid interface,
so that this term may dominate the denominator of the left side
of Eq. (5), and give a similar prediction as Eq. (3). We note that
Barrat and Chiaruttini indicate that the integral of the PFACF
should show a plateau, then decay monotonically to zero. We do
not see such behavior in any of the simulations we performed.

Considerable work is still required in the assessment of the
new GK formula for the interface thermal resistance and it’s ap-
plication to superlattices. The size dependence of the correlation
length warrants further study, as does the apparent saturation of
different quantities (thermal conductivity, total resistance, and in-
terface resistance) at different system sizes. The use of the bulk
thermal conductivity for smaller layers in Eq. (5) must also be
examined.
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