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25.1 INTRODUCTION

The exponential growth in digital technology since the 1980s, along with the cor-
responding decrease in its cost, has had a profound impact on the way radar systems 
are designed. More and more functions that historically were implemented in analog 
hardware are now being performed digitally, resulting in increased performance and 
flexibility and reduced size and cost. Advances in analog-to-digital converter (ADC) 
and digital-to-analog converter (DAC) technologies are pushing the border between 
analog and digital processing closer and closer to the antenna.

For example, Figure 25.1 shows a simplified block diagram of the receiver front 
end of a typical radar system that would have been designed around 1990. Note that 
this system incorporated analog pulse compression (PC). It also included several 
stages of analog downconversion, in order to generate baseband in-phase (I) and 
quadrature (Q) signals with a small enough bandwidth that the ADCs of the day 
could sample them. The digitized signals were then fed into digital doppler/MTI and 
detection processors.

By contrast, Figure 25.2 depicts a typical digital receiver for a radar front end. 
The RF input usually passes through one or two stages of analog downconversion to 
generate an Intermediate Frequency (IF) signal that is sampled directly by the ADC.  
A digital downconverter (DDC) converts the digitized signal samples to complex form 
at a lower rate for passing through a digital pulse compressor to backend processing. 
Note that the output of the ADC has a slash through the digital signal line with a letter 
above. The letter depicts the number of bits in the digitized input signal and represents 
the maximum possible dynamic range of the ADC. As will be described later, the use 
of digital signal processing (DSP) can often improve the dynamic range, stability, 
and overall performance of the system, while reducing size and cost, compared to the 
analog approach.

This chapter will provide a high-level outline of some of the major digital pro-
cessing techniques for radar systems that have become practical since the Second 
Edition of this Handbook was published, as well as some design tradeoffs that need 
to be considered.
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25.2 RECEIVE CHANNEL PROCESSING

Major advances in analog-to-digital converter and digital component technology have 
transformed the receiver front ends of radar systems, providing higher performance at 
lower cost. This section will describe how these new technologies are being applied to 
radar systems and the benefits they bring to system performance.

Signal Sampling Basics. Digital signal processors are sampled signal systems. 
Sampling is the process by which a continuous (analog) signal is measured at regular 
intervals of time (the sampling interval), producing a sequence of discrete numbers 
(samples) that represents the values of the signal at the sampling instants. The sam-
pling frequency is the inverse of the sampling interval and is typically designated fs. 
Sampled systems are subject to the Nyquist limit,1 which lower bounds the sampling 
rate at which reconstruction of the unsampled signal from its samples is possible with-
out corruption by aliasing, the overlapping of spectral components. The bound, termed 
the Nyquist frequency or Nyquist rate, is equal to the two-sided signal bandwidth B, 
the bandwidth considering components at both positive and negative frequencies. 
Sampling below the Nyquist rate always results in aliasing, but sampling above it does 
not guarantee alias-free operation. We will see that for bandpass signals a sampling 
rate higher than Nyquist may be required to avoid aliasing in some situations.

The Nyquist rate is often said to be twice the signal bandwidth, but that refers to a 
one-sided bandwidth, positive frequencies only, of a real signal. Our definition refers 
to the two-sided bandwidth, both positive and negative frequencies, of a signal that, in 
general, is complex with a real signal as a special case.

Is the two-sided bandwidth always twice the one-sided bandwidth? For complex 
signals in general, no, but for real signals in particular, yes. Here’s why: any signal, 
real or complex, when expressed as a Fourier integral (inverse Fourier transform) is 

FIGURE 25.1 Typical radar receiver front-end design from 1990

LPF

LPF

IF2

ADC

ADC
Q

I

ANALOG   DIGITAL

N

N
Q

I

PC

LO2

IF1

LO1

RF 
IN

TO BACKEND 
PROCESSING

90°

LO4

BPF BPF
IF3

LO3

BPF
SAMPLE 
CLOCK

FIGURE 25.2 Typical digital receiver front end
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seen to be a combination of spectral components of the form A e j2p  ft. Sampled signals 
have t = nT with T a sampling interval and n an integer time, but sampled or not, the 
basic component form is the same. And either way, complex amplitude A is a function 
of frequency f, but let’s write A instead of A( f ) for simplicity.

In these terms then, what’s special about real signals is that an easily derived 
Fourier-transform property requires their Fourier components to occur in conjugate 
pairs, so that if there is a component A e j2p  ft at frequency f with complex amplitude 
A, there is also a component A* e−j2p  ft at frequency −f with the complex conjugate A* 
of that complex amplitude. If a band of positive frequencies from f1 to f2 is occupied 
by spectral components, the corresponding band of negative frequencies from −f2 to 
−f1 will be occupied by spectral components also, so the two-sided bandwidth must be 
twice the one-sided bandwidth.

Real signals have spectral components in conjugate pairs because by using com-
plex amplitude expressed in polar form as A = r ejq,

A e j2p  ft + A* e−j2p  ft  = 2 Re{Ae j2p  ft} = 2 Re{r e jq e j2p  ft}

= 2r Re{e j(2p  ft+q  )} = 2r cos(2p  ft+q )

The imaginary parts of the conjugate spectral components have canceled to reveal 
that those components together indeed represent a real signal, a sinusoid with ampli-
tude and phase specified by the magnitude and angle of the complex amplitude. The 
latter relationship is so much a part of the engineering culture that the terms amplitude 
and phase are commonly, if imprecisely, used to refer to the magnitude and angle of a 
complex signal at an instant in time.

The following figures illustrate the origin of the Nyquist rate. Imagine that a real 
signal with a lowpass signal spectrum of two-sided bandwidth B is plotted on a long 
piece of paper, as shown in Figure 25.3a. In the figure, the positive-frequency spectral 
components of the signal are darkly shaded, and the negative-frequency components 
are lightly shaded. To see the effect of sampling this signal at Nyquist rate B, the long 
sheet is cut into smaller sheets, with the first cut at zero frequency and subsequent cuts 
at sample-rate (B, in this case) intervals in positive and negative frequency. The sheets 
are stacked one on top of the other as shown on the left side of Figure 25.3b, and the 
resulting portion of the sampled signal spectrum from 0 to the sampling rate of B is 
generated by adding the spectra of the stacked pages together, as shown on the right. 

FIGURE 25.3 (a) Bandlimited, real signal spectrum before sampling, (b) portion of sampled spectrum 
from 0 to B, and (c) full sampled signal spectrum
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Note that the lightly shaded negative-frequency portion of the spectrum now appears 
on the right of the sampled spectrum and doesn’t overlap the darker positive-frequency 
portion. As long as the two portions of the sampled signal don’t overlap, the signal is 
not aliased. The full sampled-signal spectrum is obtained by laying copies of this page 
end-to-end, as shown in Figure 25.3c, producing copies of the 0 to B portion of the 
sampled signal spectrum at B intervals.

Figure 25.4 shows the result of sampling below the Nyquist rate. Figure 25.4a 
shows the same bandlimited signal as the previous example, but this time it is sampled 
at some rate that is less than Nyquist rate B. The resulting sampled spectrum, shown in 
Figure 25.4b and c, contains overlapped, or aliased, spectral components that add and 
represent corruption of the signal.

Figure 25.5 repeats this Nyquist analysis for a bandpass signal—a signal not 
containing spectral components at or near 0 Hz. Figure 25.5a shows a real bandpass 
signal with two-sided bandwidth B and composed of positive-frequency and negative-
frequency spectral components, each of bandwidth B/2, that are complex-conjugated 
mirror images. The Nyquist rate is the signal’s two-sided bandwidth irrespective of 
the particular portion of the spectrum in which the signal resides. Therefore, for this 
signal the Nyquist frequency is B even though the signal contains components at actual 
frequencies greater than B. Figure 25.5b shows the result of sampling this signal at 

FIGURE 25.4 (a) Bandlimited lowpass signal spectrum before sampling, (b) aliased lowpass signal 
spectrum after sampling at rate fs < B, and (c) aliased sampled signal spectrum
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FIGURE 25.5 (a) Bandlimited, real passband signal spectrum before sampling and (b) signal spectrum 
after sampling
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the Nyquist bound. The sampled spectra of the two portions of the signal do not over-
lap; the sampled signal is not aliased. As will be described in more detail later in the 
chapter, this technique, bandpass sampling, is a powerful tool that allows a relatively 
high-frequency signal to be sampled by a relatively low-performance digitizer, which 
can result in considerable cost savings.

Figure 25.6a shows the spectrum of a more general complex signal of bandwidth 
B before sampling. Note that this signal does not possess complex-conjugate spectral 
symmetry. The signal spectrum after sampling by its Nyquist frequency B is shown in 
Figure 25.6b. There is no aliasing.

The Nyquist rate is a minimum sampling frequency for a signal, a bound, and 
meeting the bound is necessary, but not sufficient, to ensure that no aliasing occurs. 
Consider the case presented in Figure 25.7a, which is the same bandlimited bandpass 
signal shown in Figure 25.5, but shifted in frequency so that it doesn’t begin exactly 
at B. The sampled signal spectrum in Figure 25.7b shows that, although the sampling 
rate satisfies the Nyquist bound, the sampled signal is still aliased. To solve this prob-
lem the signal could be moved to a different center frequency before sampling or 
the sampling rate could be increased. The system designer must always develop the 
frequency plan of a sampling system carefully to determine an appropriate sampling 
frequency and to ensure that aliasing does not occur. A full treatment of this subject is 
presented by Lyons.2

In an actual system, before sampling the signal is typically passed through an anti-
aliasing filter, which is an analog lowpass or bandpass filter that places an upper 
limit on the signal bandwidth. The filter needs to provide enough stopband rejection 
that any aliased components are insignificant. Of course, practical filters do not have 

FIGURE 25.6 (a) Non-real signal spectrum before sampling by Nyquist frequency, B, and (b) signal 
spectrum after sampling

0 B/2 B 2B–B–2B

0 B 2B–B–2B
freq

freq

(a)

(b)

B

–B/2

FIGURE 25.7 (a) Bandlimited, real passband signal spectrum before sampling and (b) signal spectrum 
after sampling
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passbands extending right up to their stopband edges, so the widths of intervening 
transition bands must be counted as part of two-sided signal bandwidth B for purposes 
of determining the Nyquist rate, as the filter output may contain components in these 
transitions bands that could otherwise result in significant aliasing.

Digital Downconversion (DDC). The application of digital technology to IQ 
demodulation, which is just downconversion of an IF signal to a complex baseband, 
has greatly improved the performance of coherent systems. Here, we explore two 
forms of such digital downconversion, a general form that is structurally parallel to 
traditional analog downconversion and a restricted form, direct digital downconver-
sion, which is more economical when it is applicable.

Analog Downconversion and Sampling. The general approach to digital down-
conversion derives from analog downconversion and sampling, as illustrated in the 
frequency domain in Figure 25.8. The spectra on the first and = lines represent signals 
at various points in the system, and the spectra on the ∗ and × lines, respectively, rep-
resent spectral-convolution and point-by-point spectral multiplication operations that 
relate those signals.

The first line in the figure depicts schematically a real IF signal with one- and 
two-sided bandwidths of 40 MHz and 80 MHz, respectively, and with positive- and 
negative-frequency components, respectively centered at 75 MHz and −75 MHz. The 
second line of Figure 25.8 shifts the IF signal by LO frequency −75 MHz using spec-
tral convolution. (We’ll see shortly how this is done in hardware.) The result, on the 
third line, has spectral components centered at 0 MHz and −150 MHz. Multiplication 
by the lowpass-filter frequency response in line 4 then removes the latter component, 
leaving only the complex baseband signal of line 5, which has a two-sided bandwidth 
and a Nyquist frequency of 40 MHz. The spectral convolution on line 6 corresponds 

FIGURE 25.8 Analog downconversion in the frequency domain
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to time-domain multiplication of a uniform impulse train at the 50 MHz sampling 
frequency with the signal represented by line 5. In the time domain, the result is a 
50 MHz train of sampling impulses with areas that are (give or take a scale factor that 
we are ignoring) samples of the line 5 signal at the sampling instants. Of course, we 
will not create the line 7 impulses in hardware but will instead realize the impulse areas 
digitally as numbers in registers.

A block diagram showing how this process might be implemented in hardware is 
shown in Figure 25.9. The IF signal is sent to two mixers. In one mixer, the IF signal 
is beat with the 75 MHz LO with cosine phasing, and in the other mixer, the IF is 
beat with the same LO but with negative sine phasing, so that the mixers are operated 
in quadrature, 90o apart. The mixer outputs taken together as a complex pair form a 
complex signal with the spectrum shown in line 3 of the previous figure. These sig-
nals are then passed through lowpass filters (LPF) to remove the spectral component 
centered at −150 MHz that would otherwise have resulted in aliasing in the sampling 
step to follow.

Labels I (in-phase) and Q (quadrature) are traditionally used to indicate the real 
and imaginary parts of complex time-domain signals, like those here, that are realized 
as pairs of real signals. When a vertical cut through a diagram, such as in Figure 25.9, 
picks up one I signal and one Q signal, the represented complex signal crossing that 
cut is I + jQ. In the diagram, cuts just before and after the LPF blocks pick up complex  
signals with the spectra shown on lines 3 and 5 of Figure 25.8, respectively. The  
line 3 signal is created in the time domain as

 [line 3] = [line 1] e−j2p  fLOt 

 = [line 1] cos(2p  fLOt) 

  –j[line 1] sin(2p  fLOt) 

 = [I3 

 + jQ3] 

FIGURE 25.9 Typical analog downconversion to baseband 
and digitizer
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where fLO = 75 MHz. Similarly, using ∗ for time-domain convolution (filtering with 
an impulse response),

 [line 5] = [line 3] ∗ h(t) 

 = [I3 

 + jQ3] ∗ h(t) 

 = (I3 ∗ h(t)) 

 + j(Q3 ∗ h(t)) 

 = I5 

 + jQ5 

When the filter outputs are viewed as complex signal [line 5] = I5 + jQ5 = Aejq, the 
complex magnitude A and angle q give the amplitude (give or take a scale factor) and 
phase of the IF signal, because the original IF signal could be re-created from the line 
5 signal in the time domain (again give or take a scale factor) as [line 1] = Re{[line 5] 
ej2p  fLOt}, from which it follows that, [line 1] = Re{A ejq e j2p  fLOt} = A Re{ej(2p  fLOt + q)} 
= A cos(2p  fLOt + q  ).

As a final step the baseband I and Q signals after the filters are digitized by ADCs at 
a 50 MHz sampling rate, producing I7 and Q7 output samples or, equivalently, complex 
output samples I7 + jQ7.

The slash through the output of the ADC with a “16” above it in Figure 25.9 indi-
cates that our ADC produces 16 bits of digital output. ADCs provide approximately 
6 dB of dynamic range per bit, so our 16-bit ADC provides about 96 dB of dynamic 
range, assuming ADC nonlinearities are negligible.

A General Approach to Digital Downconversion. In digital downconversion, 
the analog IF signal is first sampled by an ADC, and all of the subsequent processing 
is then done digitally. Figure 25.10 depicts the digital downconversion process for our 
previous example, again in the frequency domain. The top line schematically repre-
sents the real IF signal with parameters as before. Performing the sampling analysis 
described previously, we discover that setting the sample rate to the two-sided signal 
bandwidth of 80 MHz would produce aliasing. However, a 100 MHz sample rate does 
not cause aliasing and is used on the second line of the figure. Sampling the input 
signal at 100 MHz replicates the signal spectrum at 100 MHz intervals as shown on 
line 3. Frequency shifting is accomplished by spectrally convolving this signal with 
the complex –75 MHz LO tone shown in line 4, producing the frequency-shifted sig-
nal on line 5. The latter signal is spectrally multiplied by the filter response shown on 
line 6 to remove the copies of the negative-frequency signal component, producing 
the complex baseband signal shown on line 7. This signal, which now has a two-sided 
bandwidth and Nyquist frequency of 40 MHz, is spectrally convolved in line 8 with 
impulses at the spectral origin and at 50 MHz to effectively decimate the signal by a 
factor of two.3 The final baseband signal on line 9 has a sample rate of 50 MHz.

Figure 25.11 depicts the hardware implementation of this DDC architecture. The 
IF signal centered at 75 MHz is digitized directly by an ADC. After the ADC, the 
architecture is very similar to analog downconversion, except that the processing is 
performed digitally. In our example, we elect to sample the IF signal at a rate of 
100 MHz with a 16-bit ADC. This architecture realizes the LO with a numerically 
controlled oscillator (NCO) that generates digital words to represent the cosine and 
negative sine signals at the LO frequency, here 75 MHz and sampled at the ADC 
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sample rate. The sine and cosine signals from the NCO are then digitally multiplied 
by the digitized IF signal. In this particular example, the relationship between the LO 
frequency and the sampling rate will make the required NCO and the multipliers both 
rather trivial because each required NCO output value is zero or ±1, and that special 
case will be addressed shortly. For now, this architecture supposes that no such special 
situation exists and that a general NCO/multiplier structure is needed. The design of 

FIGURE 25.10 Digital downconversion in the frequency domain
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FIGURE 25.11 Digital downconversion architecture
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a general NCO will be in Section 25.3. Following the multiplications, digital lowpass 
filters prevent aliasing when their outputs are decimated by a factor of two to produce 
complex output samples at a 50 MHz rate. In the figure, MCSPS stands for million 
complex samples per second.

The lowpass filter also reduces out-of-band noise and thus increases signal-to-
noise ratio (SNR). In order to preserve this SNR growth, the number of bits used 
to represent the filter output might need to increase. If the filter reduces the band-
width of the data by a factor R without affecting the signal of interest, then the SNR 
increase in dB is given by 10log10R. In our example, a 2× reduction in bandwidth 
results in approximately a 3 dB increase in SNR. With each bit representing about 
6 dB of SNR, the minimum number of bits required to represent the filtered signal 
could grow from 16 to 17.

In an actual application, the system designer needs to analyze the effects of sam-
pling and digital processing and determine how many bits need to be carried through 
the calculations in order to preserve SNR and prevent overflow. Considerations 
include front-end system noise, which is typically allowed to toggle two or more 
bits (four or more quantization levels) of the ADC output. Also, an actual N-bit ADC 
never provides exactly 6N dB of SNR, due to ADC-induced errors. For example, a 
typical 16-bit ADC generally provides about 14 bits or about 84 dB of SNR. Carrying 
16 bits through the signal processing provides about 96 dB of dynamic range. In this 
case, the designer may elect to allow the datapath through the lowpass filter to remain 
at 16 bits, realizing that the filtering process has simply increased the SNR of the 
signal to 87 dB, which could still be accommodated by the 16-bit datapath.

A DDC provides several benefits compared to analog downconversion. The ana-
log approach is subject to various hardware errors, including mismatch of the mix-
ers, LO signals not exactly 90o apart, and mismatches in the gains, DC offsets, or 
frequency responses of the I and Q signal paths. A DDC avoids these problems, 
though it is vulnerable to the phase noise of the ADC sample clock, ADC nonlin-
earities, and arithmetic round-off noise. Realizing maximum performance requires 
careful attention to design details.

Direct Digital Downconversion. If the designer has some flexibility in either 
the IF center frequency or ADC sample rate, a simplified DDC architecture, direct 
digital downconversion, can be considered.4,5 If the ADC sample rate is four times 
the center of the IF band, then the sampling process can also shift the spectrum 
to baseband, and the NCO and associated multipliers of the general DDC are not 
needed. In general, direct conversion to baseband is a simple and cost-effective 
DDC method that can be used when the signal being sampled is always centered at 
a single frequency. The standard DDC architecture might need to be used when the 
center frequency of the signal being sampled dynamically changes, which forces the 
DDC’s LO to change accordingly.

Let’s look at the direct DDC in the time domain first, for intuition, and then we can 
carefully derive the architecture in the frequency domain. Suppose the DDC archi-
tecture is as sketched in Figure 25.11, with an IF centered at 75 MHz and a 75 MHz 
LO and suppose the NCO is set to 300 MHz so that it produces the sampled sines and 
cosines shown in Figure 25.12a, where vertical lines and dots indicate sample times 
and values, respectively. Because the sample rate is four times the LO frequency, the 
(cos, -sin) LO sample pairs cycle repeatedly through (1, 0), (0,–1), (–1, 0), and (0, 1).

Next, suppose the IF signal is a 75 MHz sinusoid of arbitrary phase as in line (b). 
The DDC’s mixer outputs I and Q, the products of the line (b) IF signal with the two  
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line (a) LO signals, are then as in line (c). Because our hypothetical IF signal on 
line (b) was exactly at one quarter of the sample rate, both I and Q are constants, the 
sine and cosine of the IF signal’s phase angle.

Figure 25.13 shows the same 75 MHz IF tone, but sampled at 100 MHz and 60 MHz, 
which are odd integer submultiples (1/3 and 1/5) of the original sample rate of 4× the IF 
center frequency, 300 MHz. Note that odd samples still cycle between I and −I, and the 
even samples switch between Q and −Q. Odd integer submultiples of 4× the IF center 
frequency can, therefore, be viable alternative sample rates. A Nyquist bound applies and 
requires the two-sided IF bandwidth to be less than the sampling rate.

Now let’s derive the direct-DDC architecture carefully in the frequency domain. 
Suppose a real IF signal is once again centered at 75 MHz and sampled at 100 MHz 
as in line (a) of Figure 25.13. The first three lines of Figure 25.14 illustrate this in 
the frequency domain with line 3 showing the sampled IF signal. The bandpass 
filter response on line 4 removes the unwanted spectral components to produce the 
complex passband signal of line 5. This signal is then decimated by 2 and shifted 
by –75 MHz to produce, at a 50 MHz sampling rate, the desired complex baseband 
signal shown on line 9.

Figure 25.15 shows the corresponding block diagram. The magnitude of the fre-
quency response on line 4 of Figure 25.14 is neither an even nor an odd function, 
so the corresponding impulse response is neither purely real nor purely imaginary. 

FIGURE 25.12 Various signals sampled at 300 MHz: (a) 75 MHz cosine and –sine LO signals,  
(b) 75 MHz IF tone, and (c) result of multiplying (a) samples by (b) samples
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Writing that impulse response as h(n) = hI(n) + jhQ(n), using real functions hI(n) and 
hQ(n), the line 4 operation becomes

 [line 5] = [line 3] ∗ h(n) 

 = [line 3] ∗ [hI(n) 

 + jhQ(n)] 

 = ([line 3] ∗ hI(n)) 

 + j([line 3] ∗ jhQ(n)) 

 = I5 

 + jQ5 

where the fact that line 3 is real in the time domain was used in the last step. In 
Figure 25.15, the sampled IF signal, therefore, passes through different FIR filters 

FIGURE 25.14 Direct digital downconversion in the frequency domain
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FIGURE 25.15 Time-domain implementation of a direct digital downconverter
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(FIR filters are described in Section 25.4), where the top and bottom filters apply the 
real and imaginary parts of the coefficients, respectively. The equivalent complex-
impulse-response filter, with the frequency response shown in line 4 of Figure 25.14, 
is a halfband filter because that frequency response and a version shifted in frequency 
by half a period sum to a constant. This property causes almost half of its impulse-
response coefficients to be zero. Figure 25.16a illustrates the coefficients of a typical 
filter for this application. All of the odd-numbered coefficients, except for the one 
in the center, are zero, so the filter is very efficient to implement, as the zero coeffi-
cients don’t require multipliers. The frequency response’s symmetry about 1/4 of the 
sampling rate causes the even-and odd-numbered coefficients to be purely real and 
purely imaginary, respectively, so the even-and odd-numbered coefficients are used 
to, respectively, create I and Q, as shown in Figure 25.16b and c.

After the filters, the complex signal is decimated by 2 to produce a 50 MHz output 
sample rate. The final spectral convolution by a –75 MHz tone is accomplished by 
negating every other sample.

In Figure 25.17, we transform the system of Figure 25.15 to make it more computa-
tionally efficient. We begin with the structure in Figure 25.17a, which shows the filtering 
in detail using t  to indicate each clock-interval delay. The location of the one nonzero 
coefficient in the real part hI(n) of the Figure 25.16 impulse response corresponds to an 
odd-numbered delay, so hI(n) is realized using a single delay and some number of double 
delays. The imaginary part hQ(n) of the impulse response, in contrast, has nonzero coef-
ficients only at even numbers of delays, so it is realized with double delays only.

The architecture can then be further simplified by moving the decimation ahead of 
the 2t   delays, as shown in Figure 25.17b. This changes each double delay to a single 
delay at the lower clock rate at which the filter computations are now more efficiently 
clocked. Optionally, the negation of alternate samples at the output can now be relo-
cated to the decimation’s output. Each delay that the negation crosses as it moves in 
this transformation causes a net sign change in the signal, so each signal path between 
the old location and the new that contains odd numbers of delays requires coefficient 
negation to compensate. The result in the design of Figure 25.17c is negation of alter-
nate coefficients in the Q filter, as shown in Figure 25.17c.

The optional negation-moving transformation just described yields a simple inter-
pretation of system operation. Figure 25.12 shows that the leading t  delay, decima-
tion, and sign-negation operations of Figure 25.17c work together to steer I and Q 
samples into the upper and lower filter paths, respectively, but the samples that are 

FIGURE 25.16 (a) Halfband bandpass filter coefficients for a direct digital downconverter, (b) real (odd), 
and (c) imaginary (even) parts of the complex impulse response
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now aligned in time as they pass through the remaining processing do not actually cor-
respond to the same points on the IF signal input’s time line, since the I and Q samples 
were derived from alternate ADC samples. However, the Q filter with alternate coef-
ficients negated, shown in Figure 25.18, actually approximates the half-sample delay 

FIGURE 25.17  Direct digital downconverter: (a) baseline implementation, (b) decimating before filters, 
and (c) inverting every other sample after decimation
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required to realign the data in the two paths, and this causes the I and Q output values 
to be effectively sampled at the same instants.

Signal-Sampling Considerations. Actual devices and signals introduce errors. 
For example, clock jitter results in errors in the sampled output of an ADC, as shown 
in Figure 25.19. In addition, real ADCs also add internal jitter, or aperture uncertainty, 
which must be taken into account.6 If the errors in the effective sampling instant intro-
duced by these jitters are uncorrelated, a reasonable approximation, the RMS sample-
time jitter they introduce, tJ, is

 t t tJ J J= + ( ) ( )( ) ( )ADC CLOCK
2 2  

where tJ(ADC) and tJ(CLOCK) are the RMS sample time jitters introduced by the ADC and 
the clock, respectively.

A sinusoidal input signal of amplitude A and frequency f is expressed as

 v(t) = Asin(2p  ft) 

which has derivative

 dv(t)/dt = A2p  fcos(2p  ft) 

The maximum error due to jitter occurs at t = 0, when the derivative of the signal 
is at its peak, or

 dv(0)/dt = A2p  f 

The RMS error voltage, Ve, produced by an RMS sample time jitter, tJ, is given by

 Ve = A2p  f tJ 

FIGURE 25.19 RMS jitter vs. RMS 
noise
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This error voltage limits the theoretical maximum SNR of an ADC by

 SNRmax = 20log(A/Ve) = –20log[(2p  f tJ] 

This relationship is presented in Figure 25.20, which plots on the left and right 
axes, respectively, the SNR and the equivalent ADC effective number of bits or ENOB  
(≈ SNR/6 dB), both versus analog frequency and for different values of RMS sample 
jitter. Due to a variety of error sources internal to an ADC (aperture uncertainty, non-
linearities, added noise, etc.), the specified ENOB of an ADC is always less than the 
number of bits it provides. For example, a 14-bit ADC typically has an ENOB of 12.

With the bandpass sampling technique described earlier, where the ADC can sam-
ple at a rate that is considerably lower than the analog frequencies being sampled, 
it might seem attractive to do away with the receiver altogether and sample the RF 
signal directly. Although this is possible, ADC limitations restrict the performance of 
such architectures. First, the analog front end of an ADC has a lowpass 3 dB cutoff 
frequency specified by the manufacturer. ADC input frequencies should be kept well 
below this cutoff. Second, as shown previously in Figure 25.20, sampling the RF 
signal directly will dramatically increase the slew rate of the signal presented to the 
ADC, thus requiring very low levels of RMS clock jitter. Also, the ADC has inherent 
nonlinearities that produce spurs in the ADC output, a problem which typically wors-
ens with increasing input frequency. ADC datasheets specify the spur-free dynamic 
range (SFDR) of the device, which is typically defined as the dB difference in signal 
level between the desired signal and the largest spur measured at the ADC output 
with a single tone applied to the input. The SFDR of a typical ADC is higher than its 
specified SNR. Unfortunately, there are many definitions of SFDR, so the designer 
is advised to read manufacturers’ datasheets carefully in this regard. As mentioned 
earlier, the SNR of a sampled signal can be increased by filtering to eliminate noise 
in parts of the spectrum that are otherwise unused. However, the spurs generated 
by an ADC may lie in the band of interest, where filtering would be inappropriate. 
Therefore, spurs lower than the unfiltered noise level can become relatively signifi-
cant after ADC noise is reduced through filtering.

FIGURE 25.20 Signal-to-noise ratio vs. analog frequency for varying sample jitter
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Multi-Beam Digital Beamforming. An important application of digital technol-
ogy is for the beamforming function in a phased array antenna system. Figure 25.21a 
depicts an analog beamforming system. The wavefront shown can be thought of as the 
return from a target of interest. Note that the wavefront will hit each element of the array 
at different times. In order to form a beam in that particular direction, each element of 
the array needs to be followed by a time delay unit that delays the signal received at 
each element by the appropriate amount, such that when all of the outputs of the time 
delays are summed, they add up coherently to form a beam in the desired direction. 
If the system has a narrow bandwidth (bandwidth < ~5% of RF frequency) and the 
antenna beamwidth is not too narrow (so that the 3 dB beamwidth in degrees is greater 
than the percent bandwidth), the time delay can be approximated using phase shifters. 
Wide bandwidth systems require “true” time delays in order to form the beams and 
preserve the bandwidth. The receiver would follow the analog beamformer, as shown in 
the figure. Figure 25.21b shows an extreme application of digital beamforming, where 

FIGURE 25.21 (a) Analog beamformer, (b) every-element digital beamformer, and (c) subarray digital 
beamformer
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a receiver and ADC are behind every element. In this system, the time delay is imple-
mented either as a digital phase shift or digital time delay, followed by a digital summer. 
This configuration allows beams to be formed in any direction, and multiple beams can 
be formed simultaneously, if desired, by using the same sample data and implementing 
different time delays to form the different beams. However, at this writing, putting a 
digital receiver behind every element is expensive and is usually not feasible for most 
large antenna applications (i.e., for systems with thousands of elements). One compro-
mise solution is shown in Figure 25.21c, where analog beamforming is used to imple-
ment subarrays, which are followed by digital receivers and digital time delays.

Digital beamforming offers several advantages over analog beamforming. With an 
analog beamformer, usually only one beam is formed at a time. Radars are typically 
required to perform multiple functions, such as volume surveillance, target confir-
mation, tracking, etc. With only one beam at a time, there may not be enough time 
available to perform all of the required functions. A digital beamformer allows the 
formation of multiple simultaneous beams, allowing the volume surveillance func-
tion to be performed much more quickly, allowing more time to do other things. Of 
course, in order to form multiple simultaneous receive beams, the transmitted beam 
must be made broader to encompass the receive beams, which might require a more 
powerful transmitter or more integration on receive to provide the same performance 
as a single-beam system.

Another advantage has to do with dynamic range. In an analog beamforming sys-
tem, there is only one receiver and ADC, and the dynamic range performance is lim-
ited to the capability of a single channel. In a digital beamforming system, there are 
multiple receivers and ADCs, and the number of ADCs that are combined determines 
the system dynamic range. For example, if the outputs of 100 ADCs were combined 
to form a beam, assuming that each ADC induces noise that is of equal amplitude 
and uncorrelated with the others, there would be a 20 dB increase in system dynamic 
range, compared to a single-receiver system using the same ADC.

Figure 25.22 shows a block diagram of a typical digital beamforming system. Each 
antenna output port, be it from an element or a subarray, is followed by a digital 

FIGURE 25.22 Typical digital beamformer
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downconverter and an equalization filter (EQU FIR). The equalization filter is typi-
cally a complex finite impulse response (FIR) filter (described later) that adjusts the 
frequency response of each channel so that its passband matches the other channels in 
phase and amplitude before it is summed with the other channels in the beamformer. 
The coefficients of this filter are determined through a calibration process. During 
calibration, a test signal is presented to the RF input of all channels. This signal is typi-
cally a swept frequency tone or a noise input that covers the channel bandwidth. The 
ADC samples of all channels are collected simultaneously and complex weights are 
calculated for the equalization filters that force the frequency response of each channel 
to be matched. Once the channel is equalized, a unique time delay is implemented for 
each beam to be formed. As mentioned earlier, this time delay can be realized either 
as a phase shift for a narrowband system or as a time delay for a wideband system. A 
phase shift can be implemented with a complex multiply or a CORDIC operation, both 
of which will be described later. A time delay can be implemented with a FIR filter that 
imposes a linearly changing phase shift over frequency on the signal. Once the time 
delay is realized in each channel, the appropriate complex time-delayed signals from 
all of the channels are summed to form a beam. M complex summers are required to 
form M beams.

Digital Pulse Compression. Pulse compression is another signal processing 
function that is predominantly being performed digitally in radar systems. However, 
at this writing, many systems still exist with analog-delay-line pulse compressors. 
In these systems, analog pulse compression is performed at an IF, followed by the 
ADC in the processing chain. Because pulse compression increases the SNR of 
the signal, performing it before sampling increases the dynamic range requirement 
of the ADC. In a digital pulse compression system, the ADC precedes the pulse 
compressor and only has to accommodate the precompression dynamic range of 
the signal, which can be a significantly lower requirement. The digitized signal is 
converted to baseband and passed to the digital pulse compressor. The increased 
dynamic range due to the pulse compression gain is accommodated by increasing 
the number of bits in the digital computation.

Chapter 8 is devoted totally to pulse compression radar. In summary, there are 
two basic approaches to implementing digital pulse compression: time-domain and 
frequency-domain convolution. A generic time-domain convolver consists of a com-
plex FIR filter, where the coefficients are the complex conjugate of the transmitted 
baseband waveform samples in time-reversed order (which is also the definition of 
the matched filter for the transmitted signal). This architecture can compress any 
arbitrary waveform. A simplified version of the architecture results when the modu-
lation is a binary phase code. In this case, the coefficients are either +1 or –1, so the 
arithmetic performed for each sample is a complex sum or subtraction instead of  
a full complex multiplication.

Pulse compression may also be accomplished by operating in the frequency domain, 
where it is referred to as fast convolution. In this case, the baseband samples of the 
receive data and the reference transmit waveform are passed through fast Fourier 
transforms (FFTs), the data FFT outputs are multiplied point-by-point by the complex 
conjugate of the reference FFT outputs, and then the result is converted back to the 
time domain by an inverse FFT. In general, it is more hardware efficient to perform 
time-domain convolution for a small number of coefficients and frequency domain 
convolution for a large number (more than 8 or 16) coefficients.
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25.3 TRANSMIT CHANNEL PROCESSING

Before digital technology became widely available, analog techniques were 
employed to generate radar transmit waveforms. Simple pulsed systems used analog 
RF switches to gate the LO on and off. Frequency modulated signals were generated 
by surface acoustic wave (SAW) devices. Simple binary phase modulation schemes 
like pseudo-random noise waveforms were also possible. Digital technology, how-
ever, presents the radar system designer with many more options and allows arbi-
trarily modulated transmit waveforms to be modified pulse-to-pulse if desired. This 
section describes several of the techniques commonly used to generate the radar 
transmit signal digitally.

Direct Digital Synthesizer (DDS). Figure 25.23 shows a block diagram of this 
technique, in which a numerically controlled oscillator (NCO) generates a digitized 
sinusoid that is converted to an analog signal by a digital-to-analog converter (DAC). 
Figure 25.24 demonstrates how an NCO operates to produce a sine wave. The n-bit 
tuning word is actually a phase increment that determines the frequency of the sine 
wave output. The phase increment is expressed in a format called Binary Angle 
Measurement (BAM), in which the most significant bit (MSB) of the word repre-
sents 180o, the next bit represents 90o, and so on. In the phase accumulator, the tun-
ing word is added to the output of a running sum, implemented as an adder followed 
by a register (REG). This produces a uniformly increasing phase, incremented at the 
system clock rate. The m MSBs of the running sum are sent to a phase-to-amplitude 
converter, which is a lookup table that produces a k-bit value that represents the 
amplitude of the sine wave at the input phase. If we represent the tuning word by M, 
the sample frequency by fs, and the number of bits in the phase accumulator by n, 
then the frequency of the output sine wave can be expressed as Mfs/2

n.
In this scheme, the phase represented by the running sum will overflow when it 

crosses over 360o. The advantage of expressing the phase in BAM notation is that it 
allows modulo-2p arithmetic and overflows are automatically taken care of, since a 
360o phase shift is the same as 0o. For example, assume we have a 3-bit BAM nota-
tion, which means that the least significant bit (LSB) represents a phase shift of 45o. 
Let’s also assume that the tuning word is represented by 001 for a phase increment 
of 45o every clock. The running sum phase would steadily increase on every clock 
edge, becoming 000 (0o), 001 (45o), …, 110 (270o), and 111 (315o). On the next clock 
edge, the phase should be represented by 1000 for 360o. However, we are only pro-
vided a 3-bit adder, so the MSB is simply lost, leaving us with a phase code of 000 
(0o), which is the same as 360o. Therefore, the resulting phase waveform takes on a 
sawtooth pattern, linearly ramping from 0o to not quite 360o and then resetting to 0o 
and ramping again.

An important feature of an NCO for a radar application is the CLEAR signal shown 
going to the phase accumulator register. For a coherent radar exciter implementa-
tion, the transmit signal must start at the same phase on every pulse. Otherwise, the  

FIGURE 25.23 Direct Digital Synthesizer (DDS)
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transmitted signal will have arbitrary phase from pulse to pulse, making doppler 
processing difficult if not impossible. The CLEAR control provides the means to do 
this. In some applications, like for a transmit beamformer, the starting phase in each 
channel may need to be different in order to steer the beam. In this case, we could 
provide a mechanism to set the phase to the desired value at the beginning of a pulse 
instead of simply clearing it.

The DDS can also be used to generate linear and nonlinear FM “chirp” waveforms. 
This is accomplished by providing circuitry that changes the tuning word from sample 
to sample in order to provide the desired frequency (or phase) modulation. For exam-
ple, a linear FM chirp waveform requires a phase that changes in a square-law fashion 
with time. This can be accomplished by changing the tuning word (or phase step size) 
in a linearly increasing or decreasing way on every sample.

Digital Upconverter (DUC). Another popular method to implement a transmit 
waveform is through digital upconversion, also referred to as arbitrary waveform gen-
eration. In this technique, a digital complex baseband waveform, usually read from a 
memory, is first interpolated to a higher sample rate, and then modulated with digitized 
sine and cosine signals to produce a modulated carrier. Figure 25.25 provides a block 
diagram of a DUC that translates a complex baseband signal up to a 25 MHz IF. The 
baseband I and Q signals enter the DUC at a rate of 2 MCSPS and are first up-sampled 
by a factor of 50. This is accomplished by inserting 49 zeroes between each input 
sample and increasing the clock rate to 100 MHz. This signal is then passed through a 
digital lowpass filter that performs the interpolation. These signals are then multiplied 

FIGURE 25.24 NCO block diagram
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by digitized sine and cosine waveforms for the modulation carrier frequency, produc-
ing a complex modulated IF as an output. These signals are digitally summed, con-
verted to analog through a DAC, and passed through a bandpass filter to produce an 
IF output. For large upsampling ratios, a cascaded-integrator comb (CIC) interpolator, 
described in the next section, provides an efficient implementation.

25.4 DSP TOOLS

This section will describe various processing architectures and techniques that are 
available to DSP engineers.

Phase Shift. The phase shift is a core element in DSP design, and there are sev-
eral techniques available to implement one. The most straightforward approach is to 
simply perform a complex multiply, as shown in Figure 25.26. In this example, the 
complex input sample is denoted as A + jB, which is multiplied by the complex coef-
ficient C + jD to produce (AC – BD) + j(AD + BC) in order to effect the phase shift. 
This operation requires four multipliers and two adders.

After some manipulation, the following can be shown:

 I = (AC – BD) = D(A – B) + A(C – D) 

 Q = (AD + BC) = C(A + B) – A(C – D) 

Noting that the final term is the same in both equations, we see that this complex 
multiplier can be implemented with only three real multipliers and five real adds. This 
can be important if real multipliers are at a premium. Figure 25.27 shows a block 
diagram of this architecture.

CORDIC Processor. An efficient and versatile algorithm that can implement a 
phase shift without using multipliers is the COordinate Rotation DIgital Computer 
(CORDIC) function, first described by Volder7 in 1959. The CORDIC can implement 

FIGURE 25.26 Standard complex multiply
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a variety of functions, including sine, cosine, vector rotation (phase shift), polar-to-
rectangular and rectangular-to-polar conversions, arctangent, arcsine, arccosine, and 
vector magnitude, through an iterative process that just uses bit shifts and adds.8 The 
following discussion describes the CORDIC algorithm.

The equations that shift the phase of complex number I0 + jQ0 by an angle q  to 
produce I1 + jQ1 are as follows:

 I1 = I0(cos(q  )) − Q0(sin(q  )) 

 Q1 = I0(sin(q  )) + Q0(cos(q  )) 

These equations can be manipulated to provide

 I1 = cos(q  )[I0 − Q0(tan(q  ))] 
 Q1 = cos(q  )[Q0 + I0(tan(q  ))] 

The CORDIC algorithm takes advantage of this relationship to approximate an arbi-
trary phase shift by implementing multiple stages of phase shifts, where the tangent of 
the phase shift in each successive stage is the next smaller fractional power of 2, and 
multiplication by this number can be implemented by shifting the input data bits an 
integer number of places. The first few stages are as follows:

 I1 = cos(q0)[I0 – Q0(tan(q0))] = cos(q0)[I0 – Q0(1)] 

 Q1 = cos(q0)[Q0 + I0(tan(q0))] = cos(q0)[Q0 + I0(1)] 

 I2 = cos(q1)[I1 – Q1(tan(q1))] = cos(q1)[I1 − Q1(½)] 

Q2 = cos(q1)[Q1 + I1(tan(q1))] = cos(q1)[Q1 + I1(½)]

Table 25.1 shows these parameters for an eight-stage CORDIC processor. Each 
row of the table represents successive iterations of the algorithm. The tan(q i) column 
shows the factor by which the I and Q values are multiplied for each iteration. Note that 
these values are fractional powers of 2, so the multiplication can be realized by shifting 
the binary I and Q values right by i places. The q i  column shows the arctangent of this 
factor, which can also be thought of as the phase shift applied during each iteration. 

FIGURE 25.27 Complex multiply with three real multipliers
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The cos(q i) column shows the cosine of this angle, which should be multiplied by 
the result of each iteration, as shown in the equations above. In actual applications, 
however, this cosine multiplication is not performed at every iteration. At each stage, 
the implied factor that needs to be multiplied by the IQ outputs of the stage in order to 
provide the correct answer is the product of all of the cosines up to that point, as shown 
in the P[cos(q i)] column. For a large number of iterations, this product of cosines 
converges to a value of 0.607253. In 
most cases, this scaling can be compen-
sated for in later stages of processing. 
The inverse of this factor, 1.64676 for 
a large number of iterations, is the pro-
cessing gain imposed on the IQ results 
of the CORDIC. If integer arithmetic is 
performed, an extra bit should be pro-
vided at the most significant end of the 
adders in order to accommodate this 
increased signal level.

Figure 25.28 is a flow chart that 
represents the CORDIC algorithm to 
implement a phase shift. The inputs 
to the algorithm are the Iin, Qin, and fin 
(the desired phase shift). The variable i 
will keep track of the processing stage 
being performed and is initialized to 
zero. The basic algorithm can perform a 
phase shift between ±90o. If the desired 
phase shift is outside of that range, the 
input I and Q values are first negated, 
imposing a 180o phase shift, and 180o is 
subtracted from the desired phase shift. 
The new phase shift is now within ±90o, 
and the algorithm proceeds normally.

Next, the algorithm loops through 
N iterations with the goal of driving 
the residual phase error, f, to zero. In 
each iteration, a new f is calculated by 
subtracting or adding the phase shift for 

TABLE 25.1 CORDIC Parameters for First Eight Stages

i tan(q  i) q  i (deg) cos(q  i) P [cos(q  i)]

0 1 45.000 0.707107 0.707107
1 1/2 26.565 0.894427 0.632456
2 1/4 14.036 0.970143 0.613572
3 1/8  7.1250 0.992278 0.608834
4 1/16  3.5763 0.998053 0.607648
5 1/32  1.7899 0.999512 0.607352
6 1/64  0.8951 0.999878 0.607278
7 1/128  0.4476 0.999970 0.607259

FIGURE. 25.28 CORDIC algorithm flow chart
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that stage (q i from the table) to the previous value of f.  If f < 0, q i is added to f. 
Otherwise, q i is subtracted from f. In each stage, the Q (or I) input is divided by a fac-
tor of 2i by shifting the number to the right by i bits, and then added to or subtracted 
from the I (or Q) input, depending on the sign of f. The variable i is incremented and 
the process repeats until i > N, at which point the phase-shifted results are available.

Figure 25.29 is a block diagram of an eight-stage CORDIC processor that imple-
ments a phase shift, where each stage represents an iteration in the flow chart. An 
N-stage processor provides a phase shift that is accurate to within ±q N degrees (from 
the table), so the more stages in the processor, the more accurate the answer. The input 
I and Q values change on the rising edge of an assumed sample clock. In the first 
stage, the I value is either added to or subtracted from the Q value in the ADD/SUB 
block. The control block on the bottom of the figure determines whether additions or 
subtractions are performed at each stage, based on the algorithm described previously. 
If the ADD/SUB block in the Q channel performs an addition, the same block in 
the I channel will perform a subtraction, and vice-versa. The result of the ADD/SUB 
blocks is stored in a register (REG) on the next clock edge and passed to the next stage 
of processing. In this implementation the last block labeled (PASS/INV) performs  
the required inversion of I and Q if the desired phase shift is beyond the ±90o range of 
the algorithm. The final multiplication by a constant is optional, as described earlier.

The architecture shown in Figure 25.29 is a good example of a pipelined processor, 
in which a portion of the computation is performed and the result is stored in a register 
on each rising edge of the sample clock and passed to the next stage of processing. The 
processor would still function if the registers were removed. However, in that case, 
when the input I and Q values changed, the final output would not be useable until the 
results of the new input values rippled through all of the stages of processing, which 
would generally be an unacceptably long period of time. In a pipelined processor, a 
small portion of the total calculations is performed at a time, and the result is stored in 
a register and passed to the next processing stage. This architecture provides a higher 
throughput than the nonpipelined version, which means that the final result can be 
produced at a much higher sample rate, which is inversely proportional to the delay 
of a single stage. The latency of a pipelined processor refers to the delay experienced 
between the time a new data sample is entered into the processor and the time that 
the result based on that input is available on the output. The eight-stage, pipelined 
CORDIC processor shown in the figure would have a latency equivalent to eight clock 
periods and a throughput equivalent to the clock rate (i.e., once the pipeline is filled 
and the first result is available on the output, successive clocks will produce new out-
puts at the clock rate).

FIGURE 25.29 Eight-stage CORDIC processor
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Digital Filters and Applications. This section 
describes several of the major forms of digital filters 
and how they are used in radar signal processing.

Finite Impulse Response (FIR) and Infinite 
Impulse Response (IIR) Filters. Figure 25.30 
shows a block diagram of a direct-form digital FIR 
filter. The input sample feeds a shift register, where 
each block labeled t  indicates a one-sample delay 
in the shift register. The input sample and the output 
of each stage of the shift register are multiplied by 
unique coefficients, and the multiplier outputs are 
summed to produce the filtered output. Software 
tools exist that generate these coefficients and the 
number required when the user provides the desired 
filter characteristics, such as filter type (lowpass, 
highpass, bandpass, etc.), sample rate, cutoff and 
stopband frequency, desired passband ripple, and 
stopband attenuation. The filter shown is referred to as a real FIR filter, since the input 
data and coefficients are real values and real mathematical operations are performed. 
In a complex FIR filter, the data samples, coefficients, and math are complex.

This type of filter is termed finite impulse response because an impulse presented 
at the input (a single sample of “1” surrounded by samples of zeroes) would produce 
a finite-length output, consisting of the coefficients of the filter output in order as 
the “1” propagates down the shift register, as shown in Figure 25.31 for a FIR filter 
with seven coefficients (commonly referred to as a 7-tap FIR filter). In this example, 
zero-valued samples are first clocked into the FIR filter shift register, filling the shift 
register with zeroes and forcing the filter output to be zero. When the sample with a 
value of “1” is clocked into the filter, the filter output produces the first coefficient, a0, 
since the other samples in the filter are still zero. On the next clock, the “1” moves to 
the second tap of the shift register, and a “0” is clocked into the first tap, forcing the 
filter output to produce the second filter coefficient, a1. On successive clocks, the “1” 
propagates through the shift register, while zeroes are clocked into the shift register 
input, producing all of the filter coefficients on the output in sequence. The FIR filter 
uses feed-forward terms only, meaning that the output values only depend on the input 
values with no feedback terms.

Figure 25.32 depicts the general form for an infinite impulse response (IIR) filter. 
IIR filters make use of feed-forward and feedback terms. They are referred to as infinite 
impulse response because an impulse presented at the input to the filter will produce an 
infinite string of nonzero outputs in an ideal situation.

FIGURE 25.30 General direct-form 
FIR filter block diagram
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FIGURE 25.31  Impulse response of 7-tap FIR filter
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Compared to FIR filters, IIR filters offer several advantages. In general, they require 
less processing and memory to implement similar functions. It is also easier to imple-
ment some filter responses as IIR rather than FIR filters. However, without careful 
design, IIR filter responses can be very sensitive to coefficient quantization limitations 
and could exhibit a tendency to overflow (i.e., produce an output that exceeds the proces-
sor dynamic range, determined by the number of bits in the datapath). Although IIR fil-
ters are almost never used in radar systems for these and a variety of historical reasons, a 
cautious designer might find an application where they can be used to good advantage.

By contrast, FIR filters are inherently stable. Real FIR filters with symmetric coef-
ficients automatically provide a linear phase shift over frequency, introducing little or 
no phase distortion to the filtered signal, which is highly desirable in many applica-
tions. Because FIR filters require no feedback, they 
are easier to use in very high-speed applications 
than IIR filters, which typically require the compu-
tation of an output sample before the next output 
sample can be formed. Complex FIR filters, where 
a complex multiplication is performed at each tap, 
can be used to implement equalization filters, time 
delays, and pulse compression filters.

Figure 25.33 shows an alternative form for a 
FIR filter, called a transposed form FIR filter. In 
this configuration, each input sample is multiplied 
by all of the coefficients at once, with the sample 
delays between the summer outputs.

If the coefficients of a FIR filter are symmetric, 
so that the coefficients on either side of the center 
of the filter are mirror images of each other (as is 
the case with linear phase filters), multipliers can be 
saved by adding the samples that get multiplied by 
the same coefficient first, thereby requiring about 
half as many multipliers, as shown in Figure 25.34 
for a 7-tap example.

FIGURE 25.32 General IIR filter block diagram
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Decimation Filters. As mentioned previously, the complexity and cost of a signal 
processor, in terms of the amount of system resources required to implement it, gener-
ally varies linearly with the data sample rate. For this reason, in most system applica-
tions, it is cost-effective to reduce the data sample rate to a value that is just adequate to 
support the bandwidth of the system. In applications where the sample rate of a signal is 
to be decreased (decimated), the frequency content of the signal must first be reduced so 
that the Nyquist criterion is satisfied for the new sample rate. This can be accomplished 
by first passing the signal through a digital FIR filter to restrict the bandwidth of the 
signal to less than half of the decimated sample rate, and then reducing the sample rate 
of the filtered signal by a factor of R by selecting every Rth sample, as described in the 
previous discussion of decimation. A designer can take advantage of decimation by 
realizing that only the filter outputs that are used need to be computed. For example, 
if the output of a FIR filter is to be decimated by a factor of 4, only every fourth filter 
output needs to be computed, which reduces the required processing by a factor of 4.

Interpolation Filters. Interpolation is the process by which the sample rate of a 
signal is increased, for example in preparing the signal to be upconverted to an IF, 
as shown in Figure 25.25. Interpolators are typically FIR filters with a lowpass filter 
response. To increase the sample rate by a factor R, R –1 zeroes are first inserted 
between the low-rate data samples, creating a data stream at a sample rate R times 
faster than the input rate (upsampling). This data stream is then passed through the 
lowpass FIR filter to produce the interpolated high-sample-rate output. Of course, 
the FIR filter must be clocked at the higher data rate. This process is illustrated in 
Figure 25.35 for a four times increase in sample rate.

FIGURE 25.34 7-tap FIR filter with 
symmetric coefficients
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Cascaded Integrator-Comb (CIC) Filters. In decimation or interpolation appli-
cations where the rate change factor is large (typically 8 or greater), a FIR filter 
implementation might be prohibitively costly due to the large number of filter taps 
that would be required. CIC filters are a class of filters introduced by Hogenauer9 
that provide a very efficient means of implementing these filter functions that do 
not require multipliers. Excellent descriptions of this class of filter are provided by 
Lyons2 and Harris,10 which form the basis for the following discussion.

Figure 25.36a shows a single-stage CIC decimator. The filter contains an integrator 
stage consisting of a single sample delay and an adder, followed by a comb stage with 
a D-stage shift register (denoted by the Dt  block) and a subtractor. The comb filter gets 
its name because its frequency response looks like a rectified sine wave and resembles 
the teeth of a comb. After the comb stage, the signal is decimated by a factor R (denoted 
by the ↓R block) by only passing every Rth sample. In most applications, the number 
of stages in the shift register, D, is equal to the rate change factor, R. Figure 25.36b 
depicts a CIC interpolator, where upsampling by a factor of R (denoted by the ↑R block) 
is followed by a comb section and an integrator. The upsampling is accomplished by 
zero insertion as described in the previous section, “Interpolation Filters.” Note that the 
processing only consists of delays and adds.

Figure 25.37a shows the sin(x)/x frequency response of a single-stage CIC deci-
mator, where R = D = 8. The desired passband is the lightly shaded area centered at  
0 Hz with bandwidth BW. The darker shaded areas with bandwidth BW in Figure 25.37a 
indicate signals that will alias into the baseband signal after decimation by 8, as shown 
in Figure 25.37b (after Lyons2). Note that unless BW is very small, a significant portion 
of out-of-band signals would get folded into the decimated baseband signal. The typi-
cal method used to improve this filter response is to increase the filter order by adding 
more stages. Figure 25.38 shows a three-stage CIC decimation filter, and its frequency 
response before and after decimation by 8 is shown in Figure 25.39a and b, respectively. 
Note that the aliased components are significantly reduced in amplitude, compared to the 
single-stage CIC filter response, and the main passband has more attenuation toward the 
edges. In typical applications, a CIC decimator is followed by a FIR lowpass filter and a 
final decimation by 2. That is, a decimate-by-16 filter would be composed of a decimate-
by-8 CIC filter followed by a decimate-by-2 FIR filter. The FIR filter can be tailored to 
remove the undesired residual components before the final decimation. The FIR filter 
can also be configured to compensate for the droop in the passband response.

Figure 25.40 shows an equivalent form for a CIC decimation filter, where the deci-
mation occurs right after the integrator section and before the comb section. The delay 
in the comb filter becomes a value Nt, where N is equal to D/R. This allows the comb 
section to operate at the decimated sample rate, which makes it simpler to implement. 
Due to this simplification, CIC decimators are generally implemented in this form.

FIGURE 25.36 (a) CIC decimation filter and (b) CIC interpolation filter

R
+

+

+

−
DtDt

R
+

+

+

−

INTEGRATOR COMB INTEGRATORCOMB

(a) (b)

tt

ch25.indd   29 12/20/07   1:40:35 PM



25.30 RADAR HANDBOOK 

6x9 Handbook / Radar Handbook / Skolnik / 148547-3 / Chapter 25

FIGURE 25.37 Frequency response of single-stage CIC decimation filter (a) before decimation 
and (b) after decimation
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FIGURE 25.40 CIC filter with decimation 
after integrator
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FIGURE 25.39 Frequency response of third-order CIC decimation filter (a) before decimation 
and (b) after decimation
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Careful inspection of the decimator architecture reveals a potential problem with 
the integrator. The input samples continually get added to the running sum, producing a 
definite overflow condition. The beauty of the architecture is that overflows are allowed 
and compensated for by the comb section, as long as there are enough bits in the adders 
to represent the maximum expected output value and the filter is implemented using 
two’s complement arithmetic. As described by Harris,10 the number of bits required in 
the adders (bADDER) is given by

 bADDER = bDATA + CEIL[log2(GAIN)] 

where bDATA is the number of bits in the input data and CEIL[ ] indicates rounding the 
number in the brackets to the next highest integer. GAIN is given by

 GAIN = RK 

where R is the decimation factor and K is the number of stages in the filter, resulting in

 bADDER = bDATA + CEIL[log2(R
K)] 

For example, assume we have 12-bit input data (bDATA = 12) and a 3-stage CIC filter 
(K = 3) that decimates the sample rate by a factor of 10 (R = 10). Substituting into this 
equation produces

 bADDER = 12 + CEIL[log2(103)] = 12 + CEIL[9.966] = 12 + 10 = 22 

In practice, although the first adder stage must support this number of bits, lower 
order bits may be pruned from the adders in successive stages, as described by 
Harris.10

A CIC interpolating filter would be preceded by a FIR-filter-based interpolator. 
CIC interpolators are described in detail in the referenced literature.

The Discrete Fourier Transform (DFT). In many sampled data systems, spec-
tral analysis is implemented by performing the discrete Fourier transform (DFT). The 
DFT forms the basis for many radar signal processing algorithms, such as doppler 
processing and fast convolution pulse compression (described in Chapter 8), as well as 
radar functions such as synthetic aperture radar (SAR) and inverse synthetic aperture 
radar (ISAR). The DFT takes N data samples (real or complex) as input and gener-
ates N complex numbers as output, where the output samples represent the frequency 
content of the input data sequence. For a sample rate fs, each output frequency sample 
(bin) has a width of fs/N. The mth output sample, X(m), represents the amplitude and 
phase of the frequency content of the finite-length input sequence centered at the 
frequency mfs/N.

If an input signal is exactly centered in one of the DFT frequency bins, the output 
will have a maximum value for that bin and nulls for all other bins. However, any fre-
quency other than one centered in a bin will bleed into the other bins. The basic DFT 
bin has a frequency response similar to sin(x)/x, which means that a signal in another 
bin might bleed into a DFT frequency bin with an attenuation as small as 13 dB. To 
compensate for this, the input samples can be weighted in amplitude with a wide selec-
tion of weights, such as Hanning and Hamming weights, which broaden the main lobe 
response of the DFT output, but reduce the amplitude of the side lobes. A thorough 
treatment of DFT weighting functions and their effects is given by Harris.11
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The Fast Fourier Transform (FFT). The implementation of a DFT is computa-
tionally intensive, requiring N2 complex multiplies. The fast Fourier transform (FFT)12 
is a very efficient technique to implement the DFT, if N is a power of 2, which requires 
only (N/2)log2N complex multiplies.

The basic computational element in an FFT is the butterfly, shown in Figure 25.41. 
In the butterfly operation, one input is phase shifted and then added to and subtracted 
from a second input to form two outputs. This structure is referred to as a radix-2 but-
terfly because it has two inputs. For certain FFT configurations, radix-4 and higher-
radix butterflies provide some computational savings.

Figure 25.42 shows a radix-2, 8-point FFT. The phase shifts are represented as 
complex weights WN

k, where N is the number of points in the FFT and k indicates the 
particular phase shift applied. WN

k denotes a phase shift of 2kπ/N. These weights are 
often referred to as twiddle factors. Figure 25.43 shows the phase shifts associated 
with various twiddle factors.2

Note that the 8-point FFT consists of three stages. All of the computations in each 
stage are executed before proceeding to the next stage. Also note that the phase shift 
in the first stage, W8

0, is zero, which requires no computation at all.

FIGURE 25.41 Radix-2 
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FIGURE 25.42 Eight-point, Radix-2 FFT

+

W 8
0

+

+
+
+

+

W 8
0 +

+
+
+

−

−

+

W 8
0 +

+
+
+

−

+

W 8
0 +

+
+
+

−

W 8
1 +

+

−

W 8
0 +

+

−

++
+

++
+

W 8
1 +

+

W 8
0 +

+

++
+

++
+

W 8
3 +

+

W 8
2 +

W 8
1 +

+

W 8
0 +

−

−

−

−−

−

++
+

++

++
+

++

+

+

+

+

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

STAGE 1 STAGE 2 STAGE 3

ch25.indd   33 12/20/07   1:40:43 PM



25.34 RADAR HANDBOOK 

6x9 Handbook / Radar Handbook / Skolnik / 148547-3 / Chapter 25

Since additions are performed in each stage, the magnitude of each output stage 
sample could be a factor of two or more greater than the input samples. If fixed-point 
computations are used, then this increased dynamic range results in a growth in the 
number of bits required to represent the values, and there needs to be a strategy to 
accommodate it.

There are several techniques generally used to handle this increased dynamic range 
in fixed-point FFTs. One scheme would be to ensure that the computation stages carry 
enough bits to accommodate the bit-growth. For example, in our 8-point FFT example, 
if we assume that the input samples are 12-bit complex numbers, and if we assume 
that the magnitudes of the complex numbers do not exceed 12 bits, then the final FFT 
outputs could grow 3 bits compared to the inputs, so the FFT computations could be 
performed with 15 bit or larger adders. This also means that the multipliers would have 
to handle the larger number of bits on the inputs. This method could get unwieldy for 
large FFTs.

Another technique is to automatically scale the outputs of each stage by a factor of 
0.5, which would not allow the outputs to grow. Unfortunately, this would also limit 
any processing gain that the FFT might offer.

A third method, called block floating point, checks the magnitudes of all the out-
puts after each stage is computed and provides a single exponent for all output values. 
If any of the outputs have overflowed or come near to overflowing, then all of the 
outputs are scaled by a factor of 0.5, and the common exponent is incremented by 1. 
Enough bits have to be provided in the final mantissa to accommodate the dynamic 
range growth. This technique is popular because it only scales the output values when 
absolutely necessary.

25.5 DESIGN CONSIDERATIONS

This section addresses topics that need to be considered in the design of radar DSP 
systems as well as implementation alternatives.

Timing Dependencies. In coherent radar systems, all local oscillators (LOs) 
and clocks that generate system timing are derived from a single reference oscilla-
tor. However, this fact alone does not ensure that the transmitted waveform starts 
at the same RF phase on every pulse, which is a requirement for coherent systems.  

FIGURE 25.43 Phase shifts inferred by various twiddle factors
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Consider a system with a 5-MHz reference oscillator, from which is derived a 
75 MHz IF center frequency (on transmit and receive) and a complex sample rate 
of 30 MHz. A rule of thumb is that the clock used to produce the pulse repetition 
interval (PRI) needs to be a common denominator of the IF center frequencies on 
transmit and receive and the complex sample frequency in order to assure pulse-to-
pulse phase coherency. For this example, with an IF center frequency of 75 MHz and 
a complex sample rate of 30 MHz, allowable PRI clock frequencies would include 
15 MHz and 5 MHz.

Hardware Implementation Technology. In the past, implementing a real-
time radar digital signal processor typically required the design of a custom comput-
ing machine, using thousands of high performance integrated circuits (ICs). These 
machines were very difficult to design, develop, and modify. Digital technology has 
advanced to the point where several implementation alternatives exist that make the 
processor more programmable and, hence, easier to design and change.

Parallel General-purpose Computers. This architecture employs multiple gen-
eral-purpose processors that are connected via high-speed communication networks. 
Included in this class are high-end servers and embedded processor architectures. 
Servers are typically homogeneous processors, where all of the processing nodes 
are identical and are connected by a very high-performance data bus architecture. 
Embedded processor architectures are typically composed of single-board computers 
(blades) that contain multiple general-purpose processors and plug into a standard 
backplane architecture, such as VME. This configuration offers the flexibility of sup-
porting a heterogeneous architecture, where a variety of different processing blades 
or interface boards can be plugged into the standard backplane to configure a total 
system. At this writing, backplanes are migrating from parallel architectures, where 
data is typically passed as 32- or 64-bit words, to serial data links, which pass single 
bits at very high clock rates (currently in excess of 3 gigabits per second (Gbps)). 
These serial data links are typically point-to-point connections. In order to communi-
cate with multiple boards, the serial links from each board go to a high-speed switch 
board that connects the appropriate source and destination serial links together to form 
a serial fabric. Examples of popular serial fabric backplanes at this writing include 
VXS, VPX, and ATCA. It is apparent that high-speed serial links will be the primary 
communication mechanism for multiprocessor machines into the future, with ever-
increasing data bandwidths.

These parallel processor architectures offer the benefit of being programmable 
using high-level languages, such as C and C++. A related advantage is that program-
mers can design the system without knowing the intimate details of the hardware. 
Also, the software developed to implement the system can typically be moved rela-
tively easily to a new hardware architecture as part of a technology refresh cycle.

On the negative side, these systems can be difficult to program to support real-time 
signal processing. The required operations need to be split up appropriately among 
the available processors, and the results need to be properly merged to form the final 
result. A major challenge in these applications is to support the processing latency 
requirements of the system, which defines the maximum length of time allowed to 
produce a result. The latency of a processor is defined as the amount of time required 
to observe the effect of a change at a processor’s input on its output. Achieving latency 
goals often requires assigning smaller pieces of the workload to individual processors, 
leading to more processors and a more expensive system. Another challenge facing 
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these systems in a radar application is reset time. In a military application, when a 
system needs to be reset in order to fix a problem, the system needs to come back to 
full operation in a very short period of time. These multiprocessor systems typically 
take a long time to reboot from a central program store and, hence, have difficulty 
meeting reset requirements. Developing techniques to address these deficiencies is an 
active area of research. Finally, these processors are generally used for non-real-time 
or near-real-time data processing, as in target tracking and display processing. Since 
the 1990s, they have started to be applied to real-time signal processing applications. 
Although they might be cost-effective for relatively narrowband systems, their use in 
wideband DSP systems in the early 21st century is typically prohibitively expensive 
due to the large number of processors required. This situation should improve over 
time as faster and faster processors become available.

Custom-designed Hardware. Through the 1990s, real-time radar DSP systems 
were built using discrete logic. These systems were very difficult to develop and mod-
ify, but in order to achieve the required system performance, it was the only option 
available. Many systems were built using Application-Specific Integrated Circuits 
(ASICs), which are custom devices designed to perform a particular function. The 
use of ASICs allowed DSP systems to become very small with high performance. 
However, they were (and still are) difficult and expensive to develop, often requiring 
several design iterations before the device was fully operational. If an ASIC-based 
system needs to be modified, the ASICs need to be redesigned, incurring significant 
expense. Typically, the use of ASICs makes sense if tens or hundreds of thousands of 
units are to be sold, so that the development costs can be amortized over the life of the 
unit. This is rarely the case for radar systems. However, many ASICs have been devel-
oped to support the communication industry, such as digital up- and downconverters, 
which can be utilized in radar systems.

The introduction of the Field Programmable Gate Array (FPGA) in the 1980s 
heralded a revolution in the way real-time DSP systems were designed. FPGAs are 
integrated circuits that consist of a large array of configurable logic elements that 
are connected by a programmable interconnect structure. At the time of this writing, 
FPGAs can also incorporate hundreds of multipliers that can be clocked at rates up 
to a half billion operations per second, and memory blocks, microprocessors, and 
serial communication links that can support multigigabit-per-second data transfers. 
Circuits are typically designed using a hardware description language (HDL), such 
as VHDL (VHSIC Hardware Description Language) or Verilog. Software tools con-
vert this high-level description of the processor to a file that is sent to the device to 
tell it how to configure itself. High-performance FPGAs store their configuration in 
volatile memory, which loses its contents when powered down, making the devices 
infinitely reprogrammable.

FPGAs allow the designer to fabricate complex signal processing architectures very 
efficiently. In typical large applications, FPGA-based processors can be a factor of ten 
(or more) smaller and less costly than systems based on general-purpose processors. 
This is due to the fact that most microprocessors only have one or very few processing 
elements, whereas FPGAs have an enormous number of programmable logic elements 
and multipliers. For example, to implement a 16-tap FIR filter in a microprocessor 
with a single multiplier and accumulator, it would take 16 clock cycles to perform the 
multiplications. In an FPGA, we could assign 16 multipliers and 16 accumulators to 
the task, and the filter could be performed in one clock cycle.
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In order to use an FPGA most efficiently, we have to take advantage of all of 
the resources it offers. These include not only the large numbers of logic elements, 
multipliers, and memory blocks, but also the rate at which the components can be 
clocked. In the previous example, assume that the data sample rate is 1 MHz and also 
assume that the multipliers and logic can be clocked at 500 MHz. If we simply assign 
one multiplier to each coefficient, we would use 16 multipliers clocking at 500 MHz. 
Since the data rate is only 1 MHz, each multiplier would only perform one significant 
multiplication every microsecond and then be idle for the other 499 clocks in the 
microsecond, which is very inefficient. It would be much more efficient, in this case, 
to use one multiplier to perform as many products as possible. This technique, called 
time-domain multiplexing, requires additional logic to control the system and provide 
the correct operands to the multiplier at the right time. Since an FPGA can incorporate 
hundreds of multipliers, one can appreciate the power of this technique.

On the negative side, utilizing an FPGA to its best advantage typically requires the 
designer to have a thorough understanding of the resources available in the device. 
This typically makes efficient FPGA-based systems harder to design than systems 
based on general-purpose processors, where a detailed understanding of the proces-
sor architecture is not necessarily required. Also, FPGA designs tend to be aimed at 
a particular family of devices and take full advantage of the resources provided by 
that family. Hardware vendors are constantly introducing new products, invariably 
incorporating new and improved capabilities. Over time, the older devices become 
obsolete and need to be replaced during a technology refresh cycle. When a technol-
ogy refresh occurs several years down the road, typically the available resources in the 
latest FPGAs have changed or a totally different device family is used, which probably 
requires a redesign. On the other hand, software developed for general-purpose pro-
cessors may only need to be recompiled in order to move it to a new processor. Tools 
currently exist that synthesize C or Matlab code into an FPGA design, but these tools 
are typically not very efficient. The evolution of design tools for FPGAs to address 
these problems is an area of much research and development.

Hybrid Processors. Although it would be very desirable to simply write C code 
to implement a complex radar signal processor, the reality in the early 21st century is 
that, for many systems, implementing such a system would be prohibitively expensive 
or inflict major performance degradation. Although the steady increase in processor 
throughput may someday come to the rescue, the reality at this writing is that high-
performance radar signal processors are usually a hybrid of application-specific and 
programmable processors. Dedicated processors, such as FPGAs or ASICs, are typi-
cally used in the high-speed front end of radar signal processors, performing demand-
ing functions such as digital downconversion and pulse compression, followed by 
programmable processors in the rear, performing the lower-speed tasks such as detec-
tion processing. The location of the line that separates the two domains is application-
dependent, but over time, it is constantly moving toward the front end of the system.

25.6 SUMMARY

The purpose of this chapter was to provide an overview of how digital signal process-
ing has transformed radar system design and to give some insight into the techniques 
and tradeoffs that a designer has to consider. With manufacturers continually producing 
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faster and more powerful ADCs, DSP devices, and general-purpose processors, more 
and more of the radar system front end will move from analog to digital designs. For 
example, Figure 25.2 shows a typical digital receiver for a radar front end, which requires 
two stages of analog downconversion to bring the RF signal down to an IF that can be 
sampled by an ADC. This is required because of the characteristics of the ADC, which 
typically has poorer signal-to-noise ratio (SNR) and spur-free dynamic range (SFDR) 
when the input analog signal is too high, as would be the case if it were presented with 
the RF or high-IF signal directly. However, when faster ADCs become available, which 
can accommodate higher analog input frequencies while providing adequate SNR and 
SFDR, systems will be designed that sample the RF directly, as shown in Figure 25.44. 
At this writing, ADC technology allows direct sampling systems with respectable perfor-
mance to be designed for radars in the HF and VHF bands. Doubtless, future components 
will extend this performance to higher RF frequencies.
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