
, ,.., , I , . . .

..... ~.

A Full-Screen Facility for

EntityRelationship

While you can use
linear latguzges to

d d n e database
schemas, it is not very

convenient to do so.
The main goal of this
interactive system is

ease ofuse.

Gary H. W k u t and Ashok Malhotra, IBM Thomas J. Watson Research Center

data model is an abstraction that
can be supported by a database sys- A tem. It specifies the types of struc-

tures a database can contain and the
operations with which a user accesses the
database.

One of the first steps in building a
database is to define a schema, a specifica-
tion of the logical structure ofdata in apar-
ticular database. For example, if a data
model allows tables, a schema might
specify an Employee table. After the
database system has processed the schema
andcreated the Employee table, ausercan
insert a data row to represent a particular
employee.

A linear language (text strings) is not
convenient for defining schemas. The
user must remember the language’s fea-
tures, such as its syntax and the set of avail-
able data types, and must specify most in-

68

Sockur is iiowwith 1BM’s Santa.Teresa lahoiatoi-v.

0740-7459/88/1100/0068/$01.000 1988 IEEE

formation explicitly, without using de-
faults. A linear language’s syntax can be
verbose. Definitions of interrelated parts
of a schema might be split into different
statements in the language.

Our goal was to develop an easy-to-use,
interactive facility for defining schemas
for a mainframe database system. We
wanted it to be much more convenient
than a linear language. Our facility, called
Dbdefs, has several features that make it
easy to use. It provides similar interfaces
for defining schema? for two data models,
relational I and entity-relationship,’ whose
structures we summarize later in the ar-
ticle.

Features. Dbdefs integrates features
that reduce the amount of time, typing,
and memorization required to definr a
schema. The features include:

Full-screen displays for creating, dis-
playing, and changing information.

Menudriven selection of alternatives.

IEEE Software

Default values.
The ability to customize defaults and

some other aspects of the facility’s be-
havior, with either a user profile or on-line
actions.

Function keys.
Feedback that either indicates succesS

ful completion of an action or explains the
error.

Protection from harmful actions you
request inadvertently.

Prompting and on-line help.
Dbdefs isflexible: It letsyou choose how

to write definitions, where to write them,
and how to document them:

It provides interfaces for defining
databases in two data models, relational
and entity-relationship.

It lets you write and delete definitions
in a database (create and delete tables and
indexes).

It lets you read and write definitions in
files, even if you do not use a database in a
particular session with the facility. This lets
you start to define a schema today, save the
draft definitions overnight, and resume
defining the schema tomorrow. Also, you
can exportfiles to and importfilesfrom an
application program, with only minor
editing (if needed) . In this manner,
Dbdefs can help define schemas for sever-
al database systems.

*Itletsyourecordcomments,which can
later help another database user who is not
sure which tables and columns contain
data that pertains to his task.

It lets you choose the temporal order of
composingor changingpartsofthe defini-
tions:

Testing proposed definitions for cor-
rectness takes place late enough to permit
flexibility but early enough to prevent an
attempt by the facility to write erroneous
definitions to a database.

You can restructure a draft definition
of a schema that does not already exist in a
database.

Dbdefs is consistent, which makes it eas-

November 1988

ier to learn and use:
The relational and entity-relationship

interfaces are very similar.
For relational definition, the one inter-

face integrates the logical-level informa-
tion that generates four types of state-
ments in the SQL database language
(Create Table, Create Index, Label, and
Comment).

The screens give you similar sets of
functions and similar invocations of the
functions when appropriate.

Our prototyne, DMefs,
integlates features that

reduce the amount of
time, @pin& and

memorization required to
defsne a schema.

Creating a new definition and display-
ing (and optionally changing) an existing
definition use the same screen format.

Overview
Dbdefs is a prototype we developed at

IBM Thomas J. Watson Research Center.
We have implemented all the features this
article describes, except some extensions
described at the end of the article. Dbdefs
runs on the CMS operating system, which
is part of the VM system for IBM 370 com-
puters.

Erlang” is our entity-relationship system.
Erlang is a successor to the EASE system:
Both systems provide an integrated p r e
gramming language and database system.
We wrote Dbdefs in the Erlang program-
ming language.

Erlang is afront end to IBM’sStructured
Query Language/Data System, a re-
lational database system. For both the re-
lational and entity-relationship interfaces,

Dbdefs generates tables and indexrs foi- a
SQL/DS database. Characteristics of
SQL/DS determined our facility’s version
of the relational data model and in-
fluenced our version of the en ti ty-relation-
ship model.

The EASE system bias developed from
1977 to 1985 with IBM 3270class termi-
nals. Erlang shares much of the code of
EASE, operatesin the same enkironment,
and supports the same terminals. Dbdefs
uses colors extensively on the 3279 termi-
nal, but it also supports other 327Uclass
terminals. A 327Uclass terminal includes
keys that move the cursor among the fields
you can type in.

Organization. You invoke Dbdefs from
CMS by typing “dbdefs.” Figure 1 shows
the two branches of Dbdefs. Figure la
shows the screens and transitions for the
relational interface; Figure Ib shows the
screens and transitions for the entity-rela-
tionship interface.

With one exception, the screens obey a
stack discipline-you eventually return to
the previous screen or to CMS. The excep
tion is that from either main menu you re-
turn to CMS, not to the previous screen.
All the screens in Figure 1 have on-line
help,which youaccessandexit by pressing
function keys.

This article neither illustrates every
screen, nor shows how we use color to re-
inforce the identification of parts of a
screen. Features that are common to both
interfaces are described in the oveniew
section or in the relational section.

Function keys. We tried to assign func-
tion keys in each screen similarly. Some-
times the number of available function
keys constrained us. We often use the
Enter key as a function key. Key 1 always in-
vokes on-line help. Key 3 always cancels
the current screen’s partially performed
actions (if any) and returns from that
screen without performing any new ac-

69

CMS

I Table
names

Table
definition

Figure 1. Screens and transitions between screens for the (a) relational interface; (b) entity-relationship interface.

tions. In several screens, the Enter key re-
turns from that screen a . . performing
the appropriate new actions. In all screens
with scrolling, key 8 scrolls to the next
group of data, and key 7 scrolls to the pre-
vious group of data. Many programs on
the CMSoperating system use this same as-
signment of keys 1,3,7, and 8.

Screen format. Each screen has an iden-
tifjmg header. The bottom of each screen
has space for a message. For example, after
you delete a table named Employee, the
message says “deleted table Employee.”

Or suppose you try to define a table with
a column whose data type is Char (charac-
ters in SQL/DS) and whose size is 300
(which exceeds the SQL/DS maximum
for Char). In this case, Dbdefs displays a
message that says “size of char must be in
range <1,254>” and moves the cursor to
the “300,” automatically scrolling to it if
necessary.

When Dbdefs finds an error, it explains
the error and lets you correct it and per-
form other actions. Dbdefs does not look
for additional errors until you tell Dbdefs
to proceed.

Certain actions (such as deleting a table
definition) might cause harm if you re-
quest them inadvertently, so Dbdefs asks
you to confirm a request for such an ac-
tion, and it performs or cancels the action
according to your reply. Again, in each
screen, key 3 cancels the screen’s partially
performed actions (if any) and returns
from that screen.

User profile. A Dbdefs user can (but
need not) create a profile, a file that cus
tomizes the behavior of Dbdefs for that
user. A profile can specify

the data model,
the name of a database (or a blank to

indicate no database),
defaults for data types and sizes, and

defaults for the names of files for read-
ing and writing definitions.

An example profile statement is “let de-
fault length of char = 25.” When you in-
voke Dbdefs, Dbdefs processes your user
profile if one exists. Dbdefs omits the pro-
cessing if you invoke Dbdefs by typing
“dbdefs noprof.” Use of a profile can, of
course, reduce the amount of typing dur-
ing a Dbdefs session.

Selection of data model and database.
This initial screen lists the two available o p
tions: Define tables (which selects the re-
lational datamodel) anddefine entityand
relationship types (which selects the en-
tity-relationship model).

This screen also includes a field for the
database name after each option. You
select a data model and a SQL/DS
database by typing the name of the
database after the name of the option and
then pressing the Enter key to proceed to

70 IEEE Software

the main menu.
You select a data model without using a

database by leaving the database name
blank (with the cursor at that model’s
name field) before pressing Enter. Dbdefs
can read and write files of definitions even
if no database is specified.

If the user profile specifies both the o p
tion and database name (which might be
blank), Dbdefs proceeds to the main
menu without first showing the screen for
selection of data model and database.
When a user expressed a desire to use
Dbdefs to define entity-relationship sche-
mas for a system other than Erlang, we in-
cluded the ability to omit the use of a
database and the ability for a profile to
spec@ the option and database name.

Relational interface
In the relational data model, a schema

specifies tables to describe the data struc-
ture. Each table has columns. For ex-
ample, an Employee table might contain
columns for Name, Salary, and Project.
Each column has a data type and (if neces-
sary) a size. For example, a Name column
might contain 40 characters.

A table’s rows contain values (for ex-

ample, a Salary of $40,000) that conform
to the table’s specification in the schema.
A schema might specify that data rows of a
particular table cannot contain a null
value in a particular column. Also, a
schema might specify that no two data
rows of a table can equal each other in all
of a particular set of columns.

Main menu Figure 2 shows the main
menu for table definition. This screen a p
pears when the user has specified the re-
lational data model and a database named
Central, either as part of a profile or from
the data model and database selection
screen.

To invoke a function, you press a func-
tion key or Enter. To read or write a file of
definitions, you first type the desired file
name and file type following the menu
entry if a different name and type appear
on the screen.

From this screen you can also go to the
screens where you can define new tables,
display the names of existing table defini-
tions, write table definitions to a database,
and display and optionally change the
data-type defaults.

Testing the definitions for correctness

here means just checking for distinctness
oftable names. You can request this test ex-
plicitly; Dbdefs will perform it automati-
c$ly when you request writing to the
database.

We perform this test in the main menu
after you have defined all of the tables, in-
stead of performing it during table defini-
tion. This makes it easier for you to change
tentative names of tables while construct-
ing a draft definition of the database. For
example, while the names of two tables are
being exchanged, the tables might tem-
porarily have the same name.

Dbdefs can read and write definitions in
ordinary text files; itjust stores definitions
in datastructuresin main storage until you
write them to a file or to a database. In
Figure 2, the user has typed “payroll er-
1ang”as the file name and file type for both
reading and writing. The default pairs of
name and type are “input erlang” for read-
ing and “output erlang” for writing; the
user’s profile could have specified differ-
ent defaults.

The syntax in the files is a sequence of
the SQL statements Create Table, Create
Index, Label, and Comment. For writing,
Dbdefs indents to enhance readability.

.

.
* DBDEFS -- Main Menu for Table Definition *

Fill in file name and type (if read or write file), and press a PFKey or ENTER:

PF4: Define New Table

PF7: Display Table Names

ENTER: Test Definitions PF2: Display and Change Defaults

PF6: Read Definitions from
File: PAYROLL ERLANG

PF9: Write Definitions to
File: PAYROLL ERLANG

PF10: Write Definitions to Database

PF11: Delete Definitions from Database

(Using database CENTRAL on machine CENTRAL)

Other PFKeys: l=Help 3=Return

Figure 2. Screen for main menu for table definition. “PF means program function .

November 1988 71

.
* DBDEFS -- Table Definition *
.

TABLE NAME: EMPLOYEE LABEL :
COLUMN NAME DATA TYPE SIZE NOT-NULL? LABEL
I I I I ,--------I

: NAME CHAR 40 X
: SALARY INTEGER X Annual salary in dollars

UNIQUE?
I
X

PFKeys: 1 = Help 2 = Data types 3 = Return without defining
4 = Default data type & size 5 = Show comments on table E columns
7 = Scroll to previous group of columns 8 = Scroll to next group of columns
9 = Do prefix command (” , D, C, M, F, P) 10 = Insert a column at cursor
1 1 = Delete column at cursor 12 = Copy another table’s columns at cursor
ENTER = Go to next table if displaying; define table if defining

Figure 3. Screen for table definition.

For reading, indentation is optional. Use
of the SQL syntax has these advantages:

1. A person who knows SQL can under-
stand (and even edit) the files with no
training. However, use of Dbdefs alone
(including its fimctions for reading and
writing files) to define SQL/DS databases
does not require that you know SQL syntax
or examine the files.

2. You can create StatementsviaDbdefs,
perform minor editing, and embed the
statements in an application program that
uses SQL/DS or another SQL database
system.

3. You can extract SQL definition state-
ments from an application program, per-
form minor editing, and read the state-
ments into Dbdefs.

4. ThepartsofDbdefsthatwrite toafile
and write to a database share code.

If a user profile or the screen for selec-
tion of data model and database named a
database, Dbdefs can write the definitions
to and delete them from the database.

Table definition. Figure 3 shows the
screen for table definition. From this
screen, you can define a new table or dis

72

play (and optionally change) an existing
definition. In this example, the user has
defined a simple table named Employee.
It has two columns: Name (40 characters)
and Salary (an integer). Each row on this
screen represents a column in the table.
Key 5 switches between hiding and show-
ing comments; Figure 3 hides them.

Tocreateor changeadefinition,youcan
type the table’sname, label, and comment
and each column’s name, data type, size,
label, comment , and Not-Null and
Unique signals (which are any nonblank
character).

The table name, column names, and
data types are required - they cannot be
leftblank. Somebutnotalldatatypes have
a size. For such a data type, leaving a blank
field for size tells Dbdefs to use the data
type’s default. The table label, table com-
ment, column labels, column comments,
Not-Null signals, and Unique signals are
optional - they may be left blank.

Below the header for column fields
(Column Name, Data Type, Size, Not-
Null?, Label, and Unique?), the screen
uses a vertical line (or a bent indicator for
Label) to point to the beginning of each

column field. For example, “Char” is a
data type, and “Annual salary in dollars” is
a column label.

SQL/DS forbids null values in data rows
for a Not-Null column. Both columns in
Figure 3 specify an “X” to signal Not-Null.
Any nonblank character in the Not-Null
field indicates forbiddance of null values;
a blank field indicates allowance of null
values. We copied the term Not Null from
the syntax of the SQL database language,
addinga hyphen.

Labels are optional. SQL/DS stores
them in itscatalogs, which are setsofinfor-
mation that describe the database. A n a p
plication program that uses SQL/DS can
read the catalogs and display labels (if any)
when presenting data to the user. Labels
can make the presentation easier to un-
derstand. The label of Salary in Figure 3 is
“Annual salary in dollars.”

If you specify one or more columns as
Unique, SQL/DS ensures that no two data
rows can equal each other in all the
Unique columns: Any two rowsmust differ
from each other in at least one Unique
column. In Figure 3, the Name column
specifies an “X” to signal uniqueness; no

IEEE Software

two employees can have the same name.
Any nonblank character in the Unique
field indicates that the column is one of
the Unique columns. A blank field indi-
cates that the column is not one of the
Unique columns. Zero or more columns
can be Unique. We copied the term
Unique from the SQL syntax. Amore real-
istic specification of an Employee table
might make Name nonunique and might
add a Unique column for an employee’s
identification number, but we wanted to
keep this example very simple.

When Dbdefs shows comments, it lets
you examine and create or change the
comments for the table and for each
column. SQL/DSstorescomments, which
are optional, in its catalogs. A SQL/DS
comment can contain 254 characters; a
screen that shows comments can display
onlyone column at a time, so Dbdefs hides
comments when you first request the
screen for table definition.

To specify a column’s data type and size
without typing them, you can place the
cursor anywhere on a column line and
press one of two function keys:

Key 4 writes a default data type and its
size on the screen. Using a profile or the
screen for defaults can change the default
data type and its size.

Key 2 displays a menu of the available
data types and sizes and lets you select a
data type and a size, which Dbdefs then
writes on the screen for table definition.

To insert or delete columns, you can
select acolumn (by placing the cursor any-
where on that column line) and then press
one of three function keys:

Key 10 pushes down the selected
column and all successive columns and in-
serts a blank column at the cursor.

Key 11 deletes the selected column and
pulls up all successive columns.

Key 12 copies another table’s columns
(including column names) at the selected
position and the successive positions
(after pushing down any columns).
Dbdefs prompts you to choose between
entering the other table’s name and can-
celing the copy. The copy function, also
suggested by prospective users, makes it
easier to

define two or more tables with identi-
cal or similar columns (permanent and
temporary employees, for example),

move columns from one table to

combine two tables or split one table in

Dbdefs also providespejxcommands to
duplicate, delete, copy, and reorder
columns. You type a command over the
colon that precedes a column’s name and
(if necessary) type a position over the
colon that precedes another column’s
name. Key 9 invokes the command. The
available commands are:

” -Duplicate the selected column after
that column.

D - Delete the selected column. This is
redundant with the deletion function key.

C- Copy the selected column to the in-
dicated position. The new column need
not follow the column copied.

M - Move the selected column to the in-
dicated position.

another, and

two.

Dbdefscanreadandwrfte
detinitions in OrrIOnary
textfileq it just stores

Mnit ionsintbia
Sauctures in main

starage until you write
them to a fib or thtabase.

For copying and moving, the available
positions (with respect to another existing
or blank column) are:

F - Following this column.
P - Preceding this column.
Duplicating and copying make it easier

to define several columns with similar
characteristics. Dbdefs initially assigns a
blank column name to the newly created
column, because a table’s columns must
have distinct names. For example, typing a
“C” over the colon before “Name” and a
“P” over the colon before “Salary” would
push down the Salary column and create a
new column between Name and Salary
with a blank column name, a40character
data type and size, a blank label, and Not-
Null and Unique signals.

Keys 7 and 8 scroll through groups of
columns. For any screen with scrolling, if
more groups of nonblank data follow,
Dbdefs tells you that more data follows.

Pressing Enter returns to the previous
screen after defining a new table or chang-
ing (if the user specified changes) an ex-
isting definition. Dbdefs automatically
tests for correctness (such as distinctness
of column names and validity of data
types) within the table definition. Defer-
ring this test to the end of table definition
makes it easier for you to change tentative
names of columns while constructing a
draft definition of a table. Key 3 returns
without creating or changing the defini-
tion.

From the screen for table names, you
can request the display (and optional
change) of the definitions of all the tables
successively. If Dbdefs reached the screen
for table definitionvia such a request, leav-
ing this screen by pressing Enter changes
this table’s definition (if you specified
changes) andalso causes the display ofthe
next table (if any). But leaving this screen
by pressing key 3 ends the succession of
displays of (and possible changes to) ta-
bles.Thus,foranymethodofreachingthis
screen, Enter tells Dbdefs to proceed with
the actions that you have started, and key 3
tells Dbdefs to abort those actions.

Datatypes. Figure 4 shows the screen for
data types. You view the menu of the
names and sizes of the data types in this re-
lease of SQL/DS. For each data type that
has a size, the text at the right shows the al-
lowed sizes and current default. Thus you
need not remember the set of available
data types or their allowed sizes.

You can select a data type by pressing
Enter after performing any of these ac-
tions:

OTypingasizeforthedatatype (nearthe
center of the screen) if the data type has a
size.

Typing any nonblank character at the
right of the data type’s name (below the
arrow in the prompt that begins “Mark a
data type”).

Leaving the cursor in the data type’s
size area (ifany) or at the right ofthe data
type’s name.

If the data type has a size, you can type a
size or can select the current default size by
not typing a size. In this example, the user
has prepared to select Char (by typing an
“X” at the right of Char below the arrow)
and has typed a length of 40 characters. In

November 1988 73

this example, the “X” is not necessary, be-
cause the “40” suffices to select Char.
Pressing Enter returns with selection of a
data type and size. Pressing key 3 returns
without selecting and does not write a new
data type and size on the screen to which
you return.

Table names. The screen for table
names shows the names of all definitions.
Function keys scroll through groups of
names. You can move the cursor to select a
name and can then press one function key
to delete the selected definition or
another key to invoke the screen for table
definition to display (and optionally
change) the selected definition. Another
key (with the cursor anywhere) succes-
sively invokes that screen to display (and
optionally change) all definitions.
Another key invokes that screen to define
a new table.

Wriling to the database. The data area in
aSQL/DSdatabase consistsofnamed por-
tions called Dbspaces. Each table in a
database resides in a Dbspace. The SQL
statement that writes a table definition to a

database has an optional parameter for
the Dbspace. For later reading and writing
of a table’s data, a SQL/DS user does not
specify (or even need to know) a table’s
Dbspace. Dbdefs does not invoke the
SQL/DS facilities for creating a Dbspace,
so at least one available Dbspace mustexist
before you can write to the database.

Half the screen for writing to the
database displays the names of the avail-
able Dbspaces. For each table that this
Dbdefs session has defined, the other half
also displays the table name, an indication
of whether the table already exists in the
database, and a field for the name of the
Dbspace in which the table will or does
exist. Function keys scroll through the two
halves separately.

For writing to the database, you specify a
Dbspace name for each table definition.
You can type these names, oryou can move
the cursor to a Dbspace name in either
half of the screen and press one function
key to fill in all blank Dbspace name fields
with the selected name.

Dbdefs initially fills in a Dbspace name
for each table that exists in the database. It
also initially fills in a Dbspace name for

each table that does not exist in the
database if only one available Dbspace ex-
ists or if any of this Dbdefs session’s tables
exist and all are in the same Dbspace. How-
ever, you can type over a name that Dbdefs
filled in.

In the 1986 ANSI standard for SQL,’ the
Create Table statement has a Unique o p
tion. In our release ofSQL/DS (forwhich
Dbdefs generates statements), the Create
Index statement has the Unique option.
When writing to a file or to a database,
Dbdefs generates a Create Index state-
ment with the Unique option for each
table with Unique columns. It generates
nocreatehdexstatementfor atablewith-
out Unique columns.

When reading from a file, Dbdefs ac-
cepts Create Index statements with or
without the Unique option, but it ignores
any that omit the option. Uniqueness is
our only reason for accepting and genera-
ting Create Index statements.

One key returns to the main menu after
writing to the database all table and index
definitions that did not already exist there.
Dbdefsdoes not rewrite definitions that al-
ready exist.

.

.
* DBDEFS -- Select Data Type and Size *

Mark a data type I or place cursor next to it, Fill in size or use default.
~~

V
INTEGER :
SMALLINT :

DECIMAL:

FLOAT :

CHAR : X
VARCHAR :
LONG VARCHAR:

GRAPHIC:
VARGRAPHIC:
LONG VARGRAPHIC:

PFKeys: 1 = Help

Precision: digits.
Scale: dec. places.

Length: 40 characters.
Max. length: chars.

Length : characters.
Max. length: chars.

31-bit binary integer.
15-bit binary integer.

1-15 digits; default is 9 .
0-15 digits; default is 0 .
Double precision (8 bytes).

1-254 characters; default is 4 .
1-254 characters; default is 254 .
Maximum 32767 characters.

1-127 characters; default is 4 .
1-127 characters; default is 127 .
Maximum 16383 characters.

3 = Return without selection ENTER = Return with selection

Flgure 4. Screen for data types.

74 IEEE Software

Defaults. This screen displays the de-
faults for data types. You can type over any
of them and can then press Enter to
change the current defaults and return to
the previousscreen. Auser profile can also
customize the default values.

The screen for defaults includes the de-
fault size for each data type that has a size.
The~current,default sizes appear during any
invocation of the screen for data types, as
shown in Figure 4.

The screen for defaults also includes the
default data type and its size. To define
them, you can press one function key to
use the screen for data types. Earlier we de-
scribed how key 4 in Figure 3 can write the
current default data type and its size on the
screen for table definition.

During the display of the screen for de-
faults, the current defaults are unchanged
until you press Enter, so you can type p r o
posed new defaults here without yetaf€ect-
ing the current defaults that appear on the
right in the screen for data types.

Entiityrelationshi p
interface

In the entity-relationship data model, a
schema specifies entity types and relation-
ship types to describe the data structure.

Each entity type has attributes. For ex-
ample, an Employee entity type might
contain attributes for Name and Salary.
Each attribute has a data type and (if nec-
essary) a size. For example, a Name attri-
bute might contain 40 characters.

In the Erlang version of this data model,
each relationship type connects two entity
types: a source and a target. For each rela-
tionship type, the schema specifies
whether the relationship is one-to-one,
one-to-many, many-to-one, or many-to-
many. For example, a Project-Member re-
lationship type might be a one-tomany re-
lationship whose source is a Project entity
type and whose target is an Employee en-
tity type.

Entity occurrences and relationship oc-
currences contain values (a Salary of
$4O,OOO, for example) that conform to the
specifications of the entity types and rela-
tionship types in the schema. A schema
might specify that no two occurrences of a
particular entity type can equal each other
in all of a particular set of attributes.

Several features of the Erlang version of

Many of Dbdefs's characteristics appear in Ben Shneiderman's guidelines on user inter-
faces. '

Although there are many interactivefacilitiesfortasks such asdatabase design (especially
on personal computers), there are few published research articles about them. Some other
systems related to Dbdefs are:

Office-by-Example. An office-information system, Offi~e-by-Example~~~ includes a re-
lational database system and full-screen capabilities forcreating, deleting, changing, display-
ing, and listing definitions of tables and other objects. From a list of object names, you can
display or delete individual definitions. A user's profile can customize the behavior of OBE.
You can define a table two ways:

You press a function key or type a command to create a table skeleton (simple picture).
After typing the table's name, you add or delete columns by pressing function keys and typ-
ing the columns' names. Each column's data type is character string. All the columns consti-
tute the set of unique columns. - You type a command or press a function key to create a definition table (a more detailed
picture of a table). After typing the table's name, you add or delete columns by pressing func-
tion keys and typing the columns' names. Here you can type each column's datatype, format
for display, and uniqueness signal. Each table must have at least one unique column. You
can default any of the information except for table name and column names. Use of a defini-
tion table can also change a definition that you created via a skeleton.

IBM's Xedit. Afull-screen text editor, Xedit is popular with users of IBM 3270-class termi-
nals. It includes a field for prefix commands before each line of text. Our prefix commands'
syntax is a subset of that of Xedit; thus Xedit users can transfer their knowledge to Dbdefs.
Xedit also has function keys for scrolling and a key for inserting a line at the cursor position. It
has a command for inserting lines of another tile into the file that Xedit is currently editing. A
user's profile can customize the behavior of Xedit.

ER-Designer. This full-screen facility for defining entity-relationship schemas (from Chen
&Associates) providesgraphics-basedentry anddisplay of entitytypesand relationshipsand
text-based entry and display of attributes. Its techniques include menus, scrolling, and
mouse-based selection. ER-Designer runs on apersonal computer; a related product, Sche-
maGen, uses the output of ER-Designer to generate schemas for any of several mainframe
database systems whose data models are not entity-relationship.

ParadoxanddBaseIIIPlus. Both Paradox(fromAnsaSoflware) anddBase 111 Plus(from
Ashton-Tate) include full-screen facilities for defining relational schemas. The facilities' tech-
niques include menus, function keys, and scrolling of columns. Their functions include view-
ing the set of available data types, copying another table's columns, and other functions.

Database Design and Evaluation Workbench. This workbench4 for database design
supports each of several steps of design5The steps in theworkbench include requirements
analysis, conceptual design (using an entity-relationship model), logical design, and physi-
cal design. The workbench supports a graphics-oriented user interface.

References
1. B. Shneiderman, Designing the User /ntefface:Strategies for Effecfive Human-Computer Interac-

2. K.-Y. Whang et al., "Officeby-Example: An Integrated Office System and Database Manager,"

3. M.M. Zlwf, "Office-by-Example: A Business Language that Unifies Data and Word Processing

4. D. Reiner et al., "A Database Designer's Workbench," in Entity-Relationship A~roach , S. Spac-

5. T.J. Teorey and J.P. Fry, Design of Database Structures, PrenticeHall. Englewood Cliffs, N.J.,

ton. Addison-Wesley, Reading, Mass., 1987.

ACM Trans. Office lnfomation Systems, Oct. 1987, pp. 393-427.

and Electronic Mail," ISMSystems J., 1982, pp. 272-304.

capietra, ed., North-Holland, Amsterdam, 1987, pp. 347-360.

1982.

the entity-relationship model differ from type). It must be declared as one-to-one,
Chen's original entity-relationship model: one-to-many, many-toone, or many-to-

Only entity types, not relationship many.
types, have attributes. *Eachentitytypemust haveakey,which

Each relationship type involves only consists of only one attribute. No two en-
two entity types (perhaps the same entity tityoccurrencescan have thesamevaluein

November 1988 75

the key attribute. A key attribute in Erlang
corresponds to a set of Unique columns in
SQL.

Most ofour screens and functionsforen-
tity-relationship schemas (data types, en-
tity type names, relationship names, writ-
ing to the database, and defaults)
resemble the corresponding screens and
functionsfor relational schemas, sowewill
not repeat their descriptions here. The
main differences appear in three screens:
main menu, entity-type definition, and re-
lationship definition. The relational and
entity-relationship functions share most of
their code.

Main menu. Figure 5 shows the screen
for the main menu for entity-relationship
definition. This screen appears when the
user has specified the entity-relationship
data model and a database named “Cen-
tral.”

The menu’s header differs slightly from
that of the tabledefinition menu. The
menu’s entries include defining and dis-
playing entity types and relationships in-
stead of tables. For brevity, we say “relation-
ship” instead of “relationship type.” The

syntax for files of definitions is an entity-re-
lationship format, not SQL statements -
you may define a schema for an entity-rela-
tionship system other than Erlang.

In testing the definitionsfor correctness
here, Dbdefs checks for:

Distinctnessof entity type and relation-
ship names.

Presence of definitions of the source
and target entity types of each relation-
ship.

Again, deferring the test to the main
menu makes it easier for you to change
names of entity types and relationships
while constructing a draft database defini-
tion. The deferral also lets you define a re-
lationship before defining its source and
target entity types.

Writing to (or deleting from) the
database consists of creating (or deleting)
SQL/DS tables and indexes that store en-
tity types and relationships. Dbdefs maps
an entity type with n attributes into a table
with ncolumns and a unique index on the
key column. Dbdefs maps a relationship
into a table with two columns (for the keys
of the source and target) and a unique
index on both columns.

Entity-type defdtion. In this screen, you
type the entity type’s name. For each attri-
bute, you can type a name, a data type, a
size, and a signal for whether the attribute
is the key. Exactly one attribute must have
a key signal.

The set of available data types differs
slightly from that for tables. The prefix
commands and all function keys (except
the one for comments) match those for
table definition.

Relationship defiition. Figure 6 shows
the screen for relationship definition.
From this screen, you can define a new re-
lationship o r display and optionally
change an existing definition.

In this example, the user has defined a
relationship named Project-Member. Its
inverse name is Assignment. It is a one-to-
many relationship between the Project
and Employee entity types.

To create or change a definition, you
can type the relationship name, inverse
name (which may be blank to indicate no
inverse name), source entity-type name,
target entity-type name, and type of rela-
tionship.

.
* DBDEFS -- Main Menu for Entity-Relationship Definition * .

Fill in file name and type (if read or write file), and press a PFKey or ENTER:

PF4 :

PF7 :

ENTER :

PF6 :

PF9 :

Define New Entity Type

Display Entity Type Names

Test Definitions

Read Definitions from
File: PAYROLL ERLANG

Write Definitions to
File: PAYROLL ERLANG

PF5: Define New Relationship

PF8: Display Relationship Names

PF2: Display a n d Change Defaults

PF10: Write Definitions to Database

PF11: Delete Definitions from Database

(Using database CENTRAL o n machine CENTRAL)

Other PFKeys: l=Help 3=Return

Figure 5. Screen for main menu for entity-relationship definition.

76 IEEE Software

.
* DBDEFS -- Relationship Definition * .

NAME OF RELATIONSHIP: PROJECT-MEMBER

NAME OF INVERSE: ASSIGNMENT

NAME OF SOURCE ENTITY TYPE: PROJECT

NAME OF TARGET ENTITY TYPE: EMPLOYEE

M or 1 : 1

M or 1 : M

PFKeys: 1 = Help 3 = Return without defining a relationship
12 = Copy source and target information from another relationship
ENTER = Go to next relationship if displaying; define relationship if defining

Figure 6. Screen for relationship definition. “M” means many.

the screen layout for table definition. pertain to your tasks. Key 12 copies another relationship’s
type (one-to-one, for example) , its
source’s name, and its target’s name.
Dbdefs prompts you to choose between
entering the other relationship’s name
and canceling the copying.

The meanings of the Enter key and key 3
correspond to their meanings in the re-
lational interface’s screen for table defini-
ton. If you press Enter, Dbdefs automati-
cally tests for correctness within the
relationship definition.

ur small community of users has
reacted favorably to the features of 0 our prototype. An inexperienced

user of databases remarked that he likes
the menus, use of color, simplicity of in-
structions, ability to cancel inadvertent ac-
tions, and straightforward creation of
database objects.

A more experienced user of databases
likes

the ease of specifymg data types and
using defaults,

the minimal memorization and typing
that are required,

the automatic testing for correctness,
and

She also suggested improvements, in-

more descriptive prompting, mes-

more flexibility in three screens;
the ability to extract information from

table definitions that already exist in a
d-tabase;

the ability to define indexes on non-
unique columns; and

revised function-key assignments.
Some other possible extensions are:

Provide a screen (to replace the cur-
rent use of a text editor) for creating,
deleting, changing, and displaying a p r e
file.

Expand the capabilities of profiles
(and perhaps add a screen) to let you cus
tomize the assignment of function keys to
functions.

Expand the set of prefix commands
(for example, to duplicate a column or at-
tribute many times).

For tables that already exist in a
SQL/DS database, provide extraction of
Dbdefs definition information from the
several system catalogs where SQL/DS
stores it. This would let youview the stored
information in one place. You can browse
the information and discover which items

cluding

sages, and help information;

When writing to the database, rewrite
the definition of a table, entity type, or re-
lationship that exists in the database ifyou
have changed the definition. Such schema
restructuring6,’ can, of course, require a
major effort (and perhaps additional in-
formation from the user) if data values al-
ready exist.

Show you an entity-relationship view of
tables that you have defined or arelational
view of entity types and relationships that
you have defined. Such a mapping be-
tween data models6 can be more complex
than the one that we use now for entity-re-
lationship definition.

Combine Dbdefs with interfaces to
other tools, such as for conceptual design,
physical design (including indexes on
nonunique co lumns) , creation of
Dbspaces, and manipulation of data oc-
currences.

Provide a workstation-based facility
with graphics and mouse-based interac-
tions.

Our techniques can be applied to other
facilities. The key features in Dbdefs are
the similar interfaces for two data models
and the integration of techniques like
menus, defaults, function keys, and user
profiles. .:.

November 1988 77

SOFTWARE
PROFESSIONALS
Due to our growth, IMSL, Inc., an 18-year leader in the
development and distribution of scientific, engineering,
and statistical software, is searching for several software
professionals to assist in the development of its high
quality, state-of-the-art FORTRAN software using SUN
Workstations.
Candidates should have FORTRAN programming
experience.
0 SR. SYSTEMS S O M A R E DESIGNER-P~.D.

in computer science or related field. Requires a mini-
mum of one year’s experience in scientific software
development and familiarity with application sohare and
fourth-generation languages. Refer to file SSD007-IES.
SY STE M S P R 0 G RAM M E R /A N A LY ST-
Master’s degree in computer science, excellent com-
munication skills, strong C and FORTRAN programming
abilities, and a background in compiler construction,
software tools and database applications. Refer to file

IMSL, Inc., offers challenging projects, excellent growth
opportunities, highly competitive salaries, as well as a
comprehensive benefits package. For confidential con-
sideration, send resume and salary requirements (indicat-
ing position of interest) to Personnel De rtment, IMSL,
Inc., 2500 ParkWest Tower One, EO0 CityWest
Boulevard, Houston, Texas 77042-3020. An equal
opportunity employer.

SDT003-IES.

THE BOOK
Object-Oriented Software Construction
by Bertrand Meyer
Prentice-Hall (1988). 552 pp. ISBN 0-13-629049-3.
The first complete presentation of the approach
that is revolutionizing software engineering.
In America: Order from your bookseller or Interactive
Software Engineering. In Europe: F r m your booklellcr or Soc.
des Outils du Logiciel. 4 NC R. BPthClhny. 92120 Montrouge,
Frmce. Phone: 1-46 57 13 36, Fax: 1-46 57 01 03.

THE COURSE
“Object-Oriented Design:
The New Breakthrough in the Search f o r
Sof tware Quality and Productivity”
taught by Dr. Bertrand Meyer. A unique opportunity
to learn firsthand how the next generation of software
will be developed.
Newark. Nov. 3-4, Los Angeles, Dec. 8-9

See our E i f d ad, iwih front cover.

Acknowledgments
Maria Butrico, Peter Chen, Sham Navathe, Ani1 Nigam, Kyu-

Young Whang, and Stanley Zdonik discussed an earlier draft of the
article with us. The referees also suggested several improvements.

References
2. 1.

3.

4.

5.

6.

7.

E.F. Codd, “A Relational Model of Data for Large Shared Data
Banks,” h m . ACM, June 1970, pp. 377-387.
P.P. Chen, ‘The Entity-Relationship Model -Toward a Unified
View of Data,” ACM Trans. Database Systems, March 1976, pp. 9-36.
A. Malhotra et al., “An Entity-Relationship Programming Lan-
guage,” Research Report RC 11816, IBM T.J. Watson Research
Center, Yorktown Heights, N.Y,April 1986.
H.M. Markowitz, A. Malhotra, and D.P. Pazel, ‘The EASE Appli-
cation Development System: Principles and language Sum-
mary,” Cumm. ACh4,Aug. 1984, pp. 785-799.
Database Language SQZ+ X3.135-1986, American Nat’l Standards
Inst., New York, 1986.
G.H. Sockut, “A Framework for Logical-Level Changes Within
Database Systems,” Computer, May 1985, pp. 9-27.
S.B. Navathe, “Schema Analysis for Database Restructuring,”
ACh4 Trans. Database Systems, June 1980, pp. 157- 184.

Gary H. Sockut is an advisory programmer at the IBM Santa Teresa
Laboratory. His main areas of interest are database management, of-
fice systems, and operating systems.

Sockut received a BS in applied mathematics from Brown Univer-
sity, an MS in electrical engineering from the Massachusetts Institute
of Technology, and a PhD in applied mathematics from Harvard
University. He is amember of the IEEE Computer Society and ACM.

Ashok Malhotra is a research staff member at the IBM T.J. Watson
Research Center. His main areas of interest are applicationdevelop
ment technology, database management, and object-oriented sys-
tems.

Malhotra received a BS and MS in electrical engineering and an
MS and PhD in management, all from the Massachusetts Institute of
Technology. He is a member of the IEEE Computer Society, ACM,
and the Institute for Management Science.

Address questions about this article to Sockut at IBM Santa Teresa
Laboratory, P.O. Box 49023, San Jose, CA 95161-9023.

IEEE Software

Reader Service Number 16

