
FIR['~JARE / HARDWARE SUPPORT FOR OPERATING SYSTEI, IS: 

PRINCIPLES A!,ID SELECTED HISTORY 

by 

Gary H. Sockut 

Center For l~esearch in Computing Technology 

Aiken Computation Laboratory 

Harvard University 

Cambridge, Massachusetts 02138 

ABSTRACT 

Firmware/hardware support for operating systems is described briefly, and 
proposed criteria for determinin~ which operating system functions are the best 
candidates for firmware/hardware implementation are listed. A selected history of 
the area is presented in three sections: past and current research in support for 
virtual machines and two sections on past and current research in support for non - 
virtual ~achine operatin~ system functions. 

This work was supported in part by the Advanced Research Projects Agency under 
contract F19628-74-C-0083. 

17 



INTRODUCTION 

Firmware (micropro~rams) and hardware have traditionally been used to interpret 
an instruction set (or a high level lan~uaEe) and have left operatin~ system 
functions to be implemented principally in software. Durin~ the past 8 years there 
have been proposals and implementations in which firmware and/or hardware have been 
used to support operating systems. This paper discusses principles and examples of 
such support. 

An operatin~ system could be defined as that which manages "resources such as 
processors, main storage, secondary storage, I/O devices, and files" [~iad74, p. I]. 
Sometimes it is difficult (and perhaps inappropriate) to distinguish operatin~ system 
functions from other functions such as run-time support for a lan~uaFc. For example, 
an assembly language user of IBH's OS/360 [IBH72] would reEard dynamic storage 
allocation as an operatin~ system function, while an ECL [ECL74] programmer would 
re~ard it as part of the language system. Operating system functions will not be 
defined further in this paper except by example. 

Hicropro~ramming will not be defined in this paper; Rosin [Ros73] discusses 
various definitions. 

CRITERIA FOR FIRMWARE / HARDWARE IMPLEMENTATIOiJ 

~'Firmware/hardware implementation has three potential advantages over software 
implementation: elimination of bottlenecks via increased computational spee d 
(efficiency), standardization for software compatibility, and bein~ at a "low level 
in the system architecture". Accordingly, several criteria are proposed here for 
determinin~ which operating system functions are the best candidates for 
firmware/hardware implementation in order to realize the above advantages -~ those 
which: 
I) are computation bound rather than I/O bound (such as system monitoring, pa~in~ 

al~orithms, storage allocation and deallocation, data structure manipulationi 
data packing and unpackin~ for input/output, and interpretation of input/output 
commands by a classical virtual machine monitor). Firmware/hardware 
implementation eliminates memory references due to fetching software 
instructions, but it does not eliminate references that are necessary to access 
data, unless those data are stored in control store or other fast memory (e.g. 
for a small working set, such as short tables). 

2) are used frequently and use a non-trivial amount of processor resources (such as 
s~orage allocation and deallocation, process dispatching, and interrupt handling 
for fast devices). Hopefully firmware/hardware implementation would 
significantly reduce the amount of time required to execute such functions. 

3) "should be" at a low level (such as security). A software program might be able 
to bypass software-implemented security mechanisms more easily than it could 
bypass hardware/firmware-lmplemented security mechanisms. 

4) are non-interrupti~le (such as synchronization primitives and low-level interrupt 
handlers). 

5) "smooth" the architecture to reduce software costs, complexity, and errors (such 
as synchronization and communication mechanisms). 

PAST AND CURRENT RESEARCH 

Almost any hardware/firmware function (such as memory protection) could be said 
to assist the operatinF system (or perhaps hinder it), but this paper concentrates on 
proposals and implementations in which firmware or hardware perform operating system 

18 



functions which are typically implemented in software. The emphasis is on firmware. 
Some of these projects (and others not listed here) also provide high level lanEuaFe 
support, but operating system support is stressed here. The functions that have been 
supported or suKKested for support by firmware or hardware in the projects described 
below cover a range of common operatin~ system functions, including virtual machine 
support, security, process scheduling, semaphores, memory allocation, virtual memory 
management, data structure manipulation and searching, input/output control and 
interrupt interpretation, and subroutine linkage and stack storage. 

The projects described below are divided into three sections: past and current 
research in virtual machine support and two sections on past and current research in 
non - virtual machine operatin~ system support. Projects are listed in chronological 
order (we believe) within each section. In ~eneral, a project's success is not 
evaluated here. The amount of space devoted to a project does not necessarily 
represent its significance but instead reflects this author's biases and the amount 
of relevant information available to him. 

Virtual Hachine Support 

Goldber~ has proposed a hardware virtualizer [Go172; Go173] as a hardware or 
firmware mechanism for implementinF recursive virtualization via a formal virtual 
machine map which maps virtual resource names to real (or the next lower level of 
virtual) resource names. A virtual machine identifier reFister identifies the 
mappings for all levels of virtualization, which are composed by the hardware or 
firmware to define the currently executin~ virtual machine. To create a hi~her level 
of virtualization, a program executing on the real (or a virtual) machine appends a 
level of mappin~ to the identifier re~ister. All such lower mappings are logically 
invisible to programs executing on a virtual machine, which operates as if it were a 
real machine. A software-visible process map (such as the so called "extended 
machine" supported by a conventional operatin~ system) can be applied to a 
highest-level virtual machine. The maps are mutually independent. Goldber~ leaves 
the specific map implementations undefined, since the maps are euite General, but as 
an example he su~Fests segmentation for the process map and paying for the virtual 
machine map. Some difficulties associated with current software virtual machine 
monitors are eliminated. Examples of such problems on the IBH 360/67 are the 
reauirement of clearinK the associative memory after modifyin~ pare tables (in 
supportin~ recursive virtualization) and the prohibition of modifyin~ a channel 
proFram. Also, the hardware virtualizer enables almost every virtual machine 
operation to be executed efficiently. No description of an actual implementation has 
been published. 

IBH has developed a firmware-implemented Virtual Hachine Assist feature [Ta174] 
to enhance performance of the VH/370 virtual machine system. Vil Assist maintains a 
virtual ProGram Status Word and other status information for each virtual machine and 
enables a program executinK on a virtual machine to issue supervisor calls, 
manipulate its Program Status Word and protection keys, and support a hi~her level of 
virtual addressing, all without the overhead of trappin~ to the software virtual 
machine monitor as would be done at an installation without the Vii Assist feature. 
Statistics indicate that VIi Assist does enhance performance; one impressive example 
is for a particular job stream runnin~ under OS/VSI under V~I/370: use of VIi Assist 
resulted in a 65% reduction in total elapsed time [}Ior74]. Tallman [Ta175] reports 
that a principle used in the design of VH Assist was to implement only those 
functions which are important to performance, after measurin~ VI~/370 overhead. One 
design constraint was that the new firmware-software interface had to conform closely 
to the old one (i.e., without V}{ Assist), in order to minimize chan~es to the VH/370 
software. Another constraint was that the new software had to be able to execute 
using the old firmware, for software testin~ and for usin~ the standard firmware in 
an emerFency. VH Assist is not as ~eneral as the hardware virtualizer, and it still 
requires software implementation of such features as virtual input/output. It is 
significant in that a manufacturer is offerin~ firmware support for virtualization as 
a regular commercial product. 

19 



Project Beta at the University of Southwestern Louisiana [Shr75] is 
investigating virtualization. Since the project covers a more general range of 
operatin~ system functions, it is described in the section on current research in non 
- virtual machine operating system support. 

A ~roup at UCLA [Pop75] has modified the hardware/firmware of a DEC PDP-11/45 to 
enable implementation of and enhance performance of a virtual machine monitor. A 
PDP-11/45 normally includes ten sensitive instructions which do not result in a trap 
when executed in a non-privileged mode and which thus prevent virtualization. The 
UCLA PDP-11/45 CPU has been modified to trap in such cases, so that a virtual machine 
monitor executing in a privileged mode can simulate these instructions. In addition, 
a performance improvement unit has been desiFned as a peripheral device. This unit 
will interpret most of a virtual machine's references to its upper 4K of memory, 
which is the mechanism by which a PDP-11 performs I/O and status modification. To 
implement a virtual machine monitor without this unit, each such reference would have 
to trap to the virtual machine monitor software, which would then simulate it. 

Hitachi Ltd. [Ohm75] is modifyin~ the firmware of its H3 computer, which is 
compatible with the IBM 370/168, to enhance performance of the VM/370 virtual machine 
system. The firmware simulates certain privileged instructions, and reflects 
supervisor calls and certain program interrupts to a virtual machine, without 
trappin~ to the virtual machine monitor software. Thus far the modifications have 
been only for Hitachi internal use. 

Past Research (other than virtual machines) 

The Burroughs B5700/B6700 series [Org73] provides high-level language support 
and operating system support. The machine language is postfix. The hardware and 
firmware provide stack storage, implement block and procedure entrances and exits, 
and maintain environment records. When a hardware interrupt occurs, relevant data is 
passed to a software procedure. There are hardware/firmware facilities for tasking, 
communication, and synchronization. Descriptors assist in data sharing and in 
segmentation. 

The Honeywell Hodel 8200 [LIat68] features hardware-controlled horizontal 
multiprogrammin F whereby single instructions from each of" up to 8 programs (plus I 
master program) are executed in round robin sequence. Execution of one instruction 
is overlapped with fetchin~ the next program s next instruction. The master program 
can block execution of other programs. Horizontal multiprogramming is claimed to be 
appropriate for some mixes of I/O-bound programs that make frequent use of fast 
peripheral devices, since input/output can be overlapped well with processing. 

Proposals have been made concerning which functions are most appropriate for 
microprogrammed implementation. Rosen [Ros68] advocates top-down design of computer 
systems and suggests interrupt handling, memory allocation, job management, 
compilation, and debu~ing aids as suitable functions for firmware implementation. 

Werkheiser [Wer70] divides operating system functions into three levels: 
minipri~itives (such as data structure manipulation and searching and subroutine 
linkage); midiprimitives (such as interprocess communication and semaphores, memory 
management, file allocation, and scheduling); and maxiprimitives (such as invocation 
of" assemblers, compilers, Loaders, etc.). ~erkheiser suggests which primitives for 
each level are the most appropriate for microprogrammed implementation, based on 
characteristics such as simplicity and cleanness of interface with other functions, 
and claims that micropro~rammed implementation is appropriate for inter-module 
communication in a hierarchical operating system. Goals are performance improvement 
and simplification of software. 

The Sin~er System Ten [Sin73] has a simple round-robin time-slicing supervisor 
implemented in hardware. Hemory partition sizes are fixed at installation time and 
can be chan~ed later. The ~oal was apparently to minimize overhead. The Ten is a 

20 



decimal machine which was introduced in 1970. 

The Venus multiprogrammin~ system [Hub70; Lis72] was implemented at MITRE on a 
user-microproFrammable minicomputer, the Interdata Model 3. Its purpose was to test 
the effect of machine architecture on the complexity of software -- system 
programmers should be able to define the operating system as simply as possible. The 
operating system is structured hierarchically to provide clarity and reduce errors. 
Liskov judges Venus" performance to be satisfactory, considering the limitations of 
the slow hardware; 5 or 6 concurrent users are supported [Lis72]. Venus was 
constrained by the amount of control store available (2000 microinstructions). The 
Venus firmware implements segmentation and demand paging, and it invokes a software 
pa~er to handle page faults. Processes can share segments, but no protection is 
provided. The firmware also implements process dispatching, semaphores and waiting 
~ueues, and call and return instructions with stack storage to allow shared reentrant 
procedures. A firmware-implemented input/output channel relieves the software of 
real-time constraints and ~ives the illusion of simultaneous input/output processing. 
I/O completion is signalled using semaphores. Liskov believes that perhaps the only 
major mistake in the design of Venus was the failure to include measurement 
mechanisms in the firmware. Such a criticism could also be made of many software 
operating systems. No further work has been done on Venus beyond that described in 
the article. 

SYMBOL [Ric71] provides hardware implementation of dynamic memory allocation and 
reclamation, virtual memory management, data structure manipulation, time-sharing 
supervision, and translation of a hi~h-level language to postfix, which is the 
machine language. Some functions are implemented via hardware algorithms driven by 
software parameters, but perhaps firmware rather than hardware implementation would 
have allowed ~reater flexibility. The goal of the SYMBOL project was to demonstrate 
that a hi~h-level language and a large part of a time-sharing operating system could 
be implemented in hardware to improve performance over that of a software 
implementation. SYMBOL was produced by Fairchild and is used at Iowa State 
University. For economic reasons, Fairchild decided not to market SYMBOL. 

The unimplemented ISPL system [Bal73] was designed at Rand to integrate a 
machine, compiler, and operatin~ system via microprogrammed implementation. The 
machine language is postfix compiled from a PL/I-like source language. The firmware 
implements process scheduling, memory allocation, and dynamic address translation for 
segmentation. Processes can share segments. There is a port mechanism for uniform 
communication with files, devices, and processes. No further work has been done on 
the ISPL system beyond the plannin~ described in the article, mainly due to 
unavailability of the planned host machine, which was to be a Standard Computer 
Corporation MLP-900. 

The firmware of the Brown University Graphics System's Meta 4A general-purpose 
processor [Ana73] implements manipulation and searching of linked lists, tables, 
character strings, and stacks. It implements subroutine linkage with stack storage 
for reentrant procedures. The firmware acknowledges input/output interrupts. It 
also supports extended instructions whereby any instruction whose operation code is 
illeFal is parsed, its operation code, referenced addresses, and operands are stored 
in main memory, and the processor traps to the operating system, which can simulate 
any desired instruction. This provides an environment for testin~ an instruction 
before committing it to firmware. The hierarchical operating system [Sto73] which is 
implemented on the processor interprets these extended instructions for such 
functions as input/output and process synchronization. Goals in the design of the 
~eta 4A architecture were to reduce memory requirements and execution times and to 
make assembly language proFramming convenient, due to the initial unavailability of a 
compiler. Benchmark programs [Ana73] indicate that the first two goals were met, and 
the authors" experience indicates that the third ~oal was met. The Meta 4A is 
implemented on one of two interconnected Meta 4 processors. It is being used for 
research in computer graphics and operating systems (see the section on current 
research). The Heta 4A demonstrates that a user can create an enhanced classical 
instruction set (IB~I 360-like in this case) with some operating system support at 
moderate micropro~ramming cost. 

21 



Burkhardt and Randel [Bur73] suggest that microprogramminE is most useful in 
improving performance of a hierarehieally organized operatin~ system, and that 
firmware should implement parts of the nucleus directly and should ~upport tasks at 
higher levels. They suggest implementation of memory protection management, 
interrupt handling, process dispatching, and process coordination and semaphores, and 
support for other tasks such as memory allocation and device control via data 
structure manipulation and search facilities. 

One workshop at the Monterey Symposium on the High Cost of Software held 
discussions on software-related advances in computer hardware [Gag73]. They 
recommended research into new computer architectures which would simplify programming 
and debugFinK and enhance portability. Their recommendations included research into 
high-level, application-specific machine primitives, descriptor architectures, 
virtualizable architectures, distributed processing, observability of data structure 
semantics, and system definition languages. 

MCP II [Bel75] is an operating system which is implemented on the BurrouGhs 
B1700 [Wi172]. A microprogrammed kernel performs time critical functions such as 
interrupt handling; implements scheduling, I/O processing, and virtual memory 
support; and provides communication between various interpreted high-level languare 
programs and the operating system. MCP II is significant in that a manufacturer is 
offering firmware support for operating system functions in a regular commercial 
product. 

The Honeywell Series 60 Level 64 [Atk74; Atk75] is a medium scale computer with 
some features found in large scale time-sharing utilities. Firmware and hardware 
were used as a medium for efficient implementation of security and other time-sharin~ 
support features, including process structure and dispatching, segment access 
protection and sharing, stack storage for reentrant procedures and parameter-passing, 
list manipulation, interrupt interpretation, and synchronization via semaphores. I/O 
completion is signalled usin~ semaphores. Two data base management functions 
(hashing and descriptor-based data field conversion) are implemented in 
hardware/firmware [Bac75]. The Series 60 Level 64 is an example of how declining 
hardware costs have led to sophisticated features on a medium scale computer. As 
with BurrouGhs ~ MCP II, a manufacturer is offering firmware support for operating 
system functions in a regular commercial product. 

Current Research (other than virtual machines) 

Since 1971, the MEMBERS project [Bro74] at Queen Mary ColleRe, University of 
London, has been developing a system for real-time applications. It includes 
microprogrammed interpretation of a high-level language, process synchronization, 
virtual memory management, and instrumentation for the operatin~ system and for 
applications. It is implemented on an Interdata Hodel 4 with writable control store. 

Since 1973, a group at Brown University has been investiFating movement of 
operatinF system functions among firmware and levels of software within a hierarchy 
to improve performance and tailorability for applications [Van75]. They plan to 
determine the advantages of mobility and to determine necessary support facilities 
and techniques for the design of operating system functions to allow such mobility. 
The optimal firmware/software division at any time may depend upon the application, 
load, etc. Movement may involve modification of data structure definitions, which 
may be a problem for those which are shared among operating system modules; an 
operating system design must be flexible enough to accommodate mobility. An 
interactive monitoring system [Sto75] which drives a Graphics display has been 
constructed to analyze programs static structure and dynamic execution behavior 
(module interactions and processor utilization). It is used to examine the behavior 
of the Brown University Graphics System's software operating system [Sto73] and 
application programs. This measurement should assist in the development of tools 
with which a user or the system can determine which functions should be moved into 
low levels in order to best improve performance. A probabilistic model will then be 

22 



constructed and will be used to predict performance benefits resultin~ from chan~in~ 
levels of functions. A limited implementation of software-firmware movement is 
planned, and a more extensive implementation of movement amon~ levels of software is 
in progress. A possible additional ~oal is automation of the choice process. 

A ~roup at Bell Laboratories [Bau75] is investi~atin~ the micropro~ramminF of 
operating system functions to enhance performance. They have micropro~rammed 
portions of two routines (storage allocation and release) of IBH's TSS operatin~ 
system, which is implemented on the IBII 360 model 67. Since IBI! does not assist user 
micropro~ramming, this ~roup produced the recuired read-only control store 
themselves. They had no mierocode simulator and thus debu~ed usinF the actual 
machine. A small performance improvement was measured. The project demonstrated 
that user micropro~rammin~ of a complex processor without support from the 
manufacturer is possible but expensive. Further work in firmware support for 
operatin~ system functions is planned. 

Von Puttkamer [Von75] describes the design of a hardware memory allocator which 
uses the buddy system allocation algorithm [Kno65]. Shift registers are used to 
maintain the required binary tree. The ~oal was to increase allocation speed. When 
the article was written, an implementation for an Interdata 7/32 was in progress. 

Project Beta at the University of Southwestern Louisiana [Shr75] includes 
research into defining firmware-suitable operating system primitives for 
multipro~rammed systems. Goals are ~enerality and flexibility via modular resource 
management and delayed binding of resource control. In this manner, hopefully 
applications will not be too constrained by low-level design decisions. Early 
(firmware) bindin~ of primitives should enable efficient implementation of delayed 
binding of hi~her-level functions. Related work includes system performance 
measurement by firmware (with less interference than by software) and error diagnosis 
by firmware (with a ~oal of fault tolerance). These Foals are to be integrated with 
virtualization. Project Beta has available three types of processors: HAT~{ILDA 
[Kor75], a Microdata 3200, and a Honeywell 68/80 HULTICS system. 

A ~roup at the University of Ottawa [Per75] has divided operating system 
functions into three levels similar to Werkheiser's: low (such as data structure 
m&nipulation and searching, dynamic address translation, and subroutine linkaKe); 
medium (such as process communication, system table maintenance, memory allocation, 
and file opening); and high (such as invocation of loading, compiling, and linking). 
They advocate microprogrammin~ of operating system functions for ~reater speed than 
software and ~reater flexibility than hardware. They plan to microproFram an 
operatin~ system nucleus on a [~icrodata 1600 computer. Their goals are improvements 
in performance and reliability. 

A aroup at Carne~ie-Hellon University [Ful75] is investiFating micropro~rammed 
support for the HYDRA operatin~ system [Wul73], one of whose ~oals is to provide a 
small kernel of operating system primitives. This ~roup is usin~ PDP-11/40s with 
writable control store in a network with other PDP-11s. They are identifying and 
microprogramming time-consumin~ operatin~ system functions (such as manaFement of 
relocation registers) whose performance would be improved by firmware implementation. 
The network is homogeneous in that a process cannot determine whether the processor 
upon which it is e×ecutin~ implements such functions in firmware or in software. 

CONCLUSIONS 

Some of the projects described above use firmware or hardware to implement 
sophisticated architectural features such as virtualization, security, and run-time 
support for hi~h-level language execution. Hany of the projects use 
firmware/hardware implementation only to improve computational speed by movinR a 
number of time-consumin~ functions from software into firmware or hardware. Such 
movement can enhance performance, but there is nothin~ magic about the 
firmware-software boundary. We believe that research in which firmware/hardware 

23 



implementation is considered within the context of total system architecture, as 
advocated, for example, by Rosin [Ros73], will have the most relevance to future 
architectures. Of the current research projects, those at Brown University and at 
the University of Southwestern Louisiana appear to be particularly promising in this 
re~ard. 

ACKNOWLEDGEMENT 

The author would like to thank George H. Mealy, Robert P. Goldberg, Richard 
H. Eckhouse, Jr., Andries Van Dam, Robert F. Rosin, and John E. Stockenberg for 
reviewing an earlier draft of this paper. 

REFERENCES 

[Aria73] Ana~nostopoulos, P., M. Hichel, G. Sockut, G. Stabler, and A. Van Dam, 
"Computer Architecture and Instruction Set Design", National Computer 
Conference, 1973. 

[Atk74] Atkinson, T., "Architecture of Series 60/Level 64", Honeywell Computer 
Journal, vol. 8, no. 2, 1974. 

[Atk75] Atkinson, T., U. Ga~liardi, G. Raviola, and H. Schwenk, Jr., "Modern 
Central Processor Architecture", Proceedings of the IEEE, June, 1975. 

[Bac75] Bachman, C., "Trends in Database Management - 1975", National Computer 
Conference, 1975. 

[Bal73] Balzer, R., "An Overview of the ISPL Computer System Design", Communications 
of the ACM, February, 1973. 

[Bau75] Bauer, S., "Bell Labs Microcode for the IBM 360/67", Eighth Annual Workshop 
on ~licropro~rammin~, ACM SIGMICRO, 1975. 

[Bel75] Bel~ard, R., private communication, April, 1975. 

[Bro74] Broadbent, J., and G. Coulouris, "HEMBERS - a Microprogrammed Experimental 
Machine with a Basic Executive for Real-time Systems", ACM SIGPLAN-SIGHICRO 
Interface Meeting, ACM SIGPLA~ Notices, August, 1974. 

[Bur73] Burkhardt, ~I., and R. Randel, "Design of Operating Systems With 
~icro-Pro~rammed Implementation", National Technical Information Service 
report PB 224 484, September, 1973. 

[ECL74] "ECL Programmer's Manual", Center for Research in Computing Technology 
report 23-74, Harvard University, December, 1974. 

[Ful75] Fuller, S., private communication, March, 1975. 

[Ga~73] Ga~liardi, U., "Report of Workshop 4: Software-Related Advances in Computer 
Hardware" in Goldberg, J. (editor), "Proceedings of a Symposium on the High 
Cost of Software", published by Stanford Research Institute, 1973. 

[Go172] Goldberg, R., "Architectural Principles for Virtual Computer Systems", 
Ph.D. thesis, Division of Engineering and Applied Physics, Harvard 
University, 1972. 

24 



[Go173] Goldber~, 

[Hat68] 

[Hor74] 

[Hub70] 

[IBM72] 

[Kno65] 

[Kor75] 

[Lis72] 

[Mad74] 

[Ohm75] 

[Org73] 

[Per75] 

[eop75] 

[Ric71] 

[Ros68] 

[Ros73] 

[Shr75] 

[Sin73] 

[Sto73] 

[Sto75] 

R., "Architecture of Virtual Machines", ACM SIGARCH-SIGOPS 
Workshop on Virtual Computer Systems, 1973; and National Computer 
Conference, 1973. 

Hatch, T., and J. Geyer, "Hardware/Software Interaction on the Honeywell 
Model 8200", Fall Joint Computer Conference, 1965. 

Horton, F., D. Wa~ler, and P. Tallman, "Virtual Hachine Assist: Performance 
and Architecture", IBH New England Pro~rammin~ Center technical report 
75.0006, April, 1974. 

Huberman, B., "Principles of Operation of the Venus Micropro~ram", National 
Technical Information Service report AD 709 717, July, 1970. 

"IBM System/360 Operatin~ System - Introduction", IBM publication 
GC28-6534-4, 1972. 

Knowlton, K., "A Fast Storage Allocator", Communications of" the ACH, 
October, 1965. 

Kornerup, P., and B. Shriver, "An Overview of the HATHILDA System", ACI~ 
SIGMICRO Newsletter, January, 1975. 

Liskov, B., "The Design of the Venus Operatin~ System", Communications of 
the ACM, March, 1972. 

Madnick, S., and J. Donovan, Operating Systems, idcGraw-Hill, 1974. 

Ohmachi, K., private communication, August, 1975. 

Or~anick, E., Computer System Organization - The B5700/B6700 Series, 
Academic Press, 1973. 

Perez, A., D. Banerji, and J. Raymond, "Microprogrammed OperatinF Systems: 
A Design and Implementation Proposal", Computer Science Department, 
University of Ottawa, 1975. 

Popek, G., "The PDP-11 Virtual Hachine Architecture: A Case Study", Fifth 
Symposium on Operating Systems Principles, ACM SIGOPS, 1975. 

Rice, R., and W. Smith, "SYMBOL - A Major Departure From Classic Software 
Dominated Von Neumann Computinff Systems", Sprint Joint Computer Conference, 
1971. 

Rosen, S., "Hardware Design ReflectinF Software Reeuirements", Fall Joint 
Computer Conference, 1968. 

Rosin, R., "The Significance of Hicropro~rammin~", International Computing 
Symposium, Davos, Switzerland, September, 1973; and ACM SIGMICRO Newsletter, 
January and July, 1974. 

Shriver, B., T. Lewis, and J. Anderson, "InteFrated Research Projects in 
Virtual Computer Systems: Project Beta", Computer Science Department report, 
University of" Southwestern Louisiana, January, 1975. 

Sinner Business Nachines, "System [Ten] Summary Manual", 1973. 

Stockenber~, J., P. Anaffnostopoulos, R. Johnson, R. Munck, G. Stabler, and 
A. Van Dam, "Operating System Design Considerations for Hicroprogrammed 
Mini-Computer Satellite Systems", National Computer Conference, 1973. 

Stockenber~, J., and A. Van Dam, "STRUCT Pro~rammin~ Analysis System", 
First National Conference on Software Engineering, 1975; published in IEEE 
Transactions on Software Engineering, December, 1975. 

25 



[Tal74] Tallman, P., R. Denson, T. Gilbert, J. Nichols, and D. Stucki, "Virtual 
ilachine Assist Feature Architecture Description", IBH Poughkeepsie 
Laboratory technical report 00.2506, January, 1974. 

[Tal75] Tallman, P., "Virtual Hachine Assist Feature ~licrocode Implementation", in 
Hicroprogramming and Systems Architecture, Infotech State of the Art Report 
23, Infotech International Ltd., 1975. 

[Van75] Van Dam, A., "Performance Improvement Through Function Mieration in a 
Distributed Computins System", proposal to the National Science Foundation, 
Division of Applied [lathematics, Brown University, September, 1975. 

[Von75] Von Puttkamer, E., "A Simple Hardware Buddy System Hemory Allocator", IEEE 
Transactions on Computers, October, 1975. 

[~er70] Werkheiser, A., "Microproerammed Operating Systems", Third Annual Workshop 
on Micropro~rammine, ACH SIGHICRO, 1970. 

[Uil72] ]~ilner, U., "Desien of the Burrouehs B1700", Fall Joint Computer Conference, 
1972. 

[Uul73] ~Julf, U., E. Cohen, U. Corwin, A. Jones, R. Levin, C. Pierson, and 
F. Pollack, "}IYDRA: The Kernel of a ~lultiprocessor Operating System", 
Department of Computer Science report, Carnegie-Mellon University, June, 
1973; and Communications of the ACH, June, 1974. 

26 




